
Acta Electrotechnica et Informatica, Vol. 18, No. 4, 2018, 3–10, DOI: 10.15546/aeei-2018-0026 3

SEARCH-TREE SIZE ESTIMATION FOR THE SUBGRAPH ISOMORPHISM PROBLEM

Uroš ČIBEJ, Jurij MIHELIČ
Faculty of Computer and Information Science

University of Ljubljana, Slovenia
{uros.cibej, jurij.mihelic}@fri.uni-lj.si

ABSTRACT
This article addresses the problem of finding patterns in graphs. This is formally defined as the subgraph isomorphism problem and

is one of the core problems in theoretical computer science. We consider the counting variation of this problem. The task is to count all
instances of the pattern G occurring in a (usually larger) graph H. The vast majority of algorithms for this problem use a variation of
backtracking. Most commonly they exhaustively search through the space of all possible monomorphisms between G and H. The size
of the search tree depends heavily on the choice of the ordering of vertices of G, which are systematically assigned to the vertices of H.
We use a method called heuristic sampling to estimate the size of the search tree for each ordering in advance. We use this estimation
to select the most suitable order of vertices of G which minimizes the expected tree size. This approach is empirically evaluated on a
set of instances, showing the practical potential of the method.

Keywords: Backtracking, heuristic sampling, sugraph matching, pattern matching, search trees, subgraph isomorphism

1. INTRODUCTION

Backtracking algorithms are one of the most common
approaches to solving hard optimization, enumeration, and
decision problems. They are simple to implement and
understand, but their behavior is very difficult to predict.
Since most of the problems being solved by backtracking
are computationally intractable, many pruning techniques
and various parameterized tricks are being used to reduce
the execution time. The large number of parameters which
define a particular variation of the backtracking search be-
comes a problem when we need to choose the best algo-
rithm for the problem at hand. This article addresses this
issue.

One of the fundamental problems classically solved by
variations of backtracking algorithms is the subgraph iso-
morphism problem. The goal of this problem is to find
a pattern graph G in a target graph H. Many variations
of algorithms for this problem exist, their main differences
being the methods for pruning (reducing the size) of the
search tree. These variations can have a vastly different be-
havior on the same instance, e.g. a certain instance might
be trivial for one algorithm and impossible for another. This
opens up another algorithmic possibility, namely, for each
instance the best algorithm could be chosen in advance, if
only we knew its behavior before actually running it on the
instance. Ideally, this behavior could be predicted analyti-
cally, by simply computing a set of features of the problem
instance. However, this has been a difficult task, because of
the large number of parameters that influence the outcome.

But luckily, there has been an interesting method de-
veloped to tackle this problem from a more pragmatical,
empirical point of view. The basic method was developed
by Donald Knuth [15], where he explored the possibilities
to predict the search tree sizes for a few simple problems
(such as the knights tour and the Instant Insanity game).
The weakness of Knuth’s approach is the fact that it as-
sumes a rather homogeneous tree, i.e. all (most) of the sub-
trees of the search tree are somewhat similar in shape (and
size). This is true for such simple problems as Knuth was

dealing with, but it is not true for more complex problems.
This is why a more complex method was devised,

named heuristic sampling [5]. It is a generalization of
Knuth’s method, where for a good implementation some
specific knowledge of the underlying problem has to be pro-
vided in the form of a heuristic function.

The main goal of this article is to implement the heuris-
tic sampling method for the subgraph isomorphism search,
devise a suitable heuristic sampling function and evaluate
it on a set of backtracking algorithms. We will focus on
its predictive strength for choosing the best algorithm for a
particular instance of the problem. Some preliminary work
on this subject was done by the authors in [8]

The remainder of the paper is organized as follows.
Next section introduces the subgraph isomorphism prob-
lem, the notation used throughout the paper, and the algo-
rithmic framework that we will be using in the evaluation of
the proposed method. Section 3 describes the foundations
of search-tree size estimation and its extension, the heuristic
sampling. Section 4 describes the empirical results, namely
the test set of graphs used in the evaluation and the setup
of the experiments, and the analysis of the obtained results.
Section 5 explores the possibilities of extension of this work
into practical solvers and concludes the paper.

2. SUBGRAPH ISOMORPHISM PROBLEM

From the viewpoint of pattern analysis and recognition,
matching graphs and subgraphs is one of the most impor-
tant tasks in graph processing. One approach to modeling
this task is via the subgraph isomorphism problem. Given
two graphs, namely, a pattern graph and a target graph, the
problem is defined as finding a subgraph (corresponding to
the pattern graph) in the target graph.

Formally, the problem can be defined as follows.

Definition 2.1. A subgraph isomorphism between a pat-
tern G = 〈V,E〉 and a target H = 〈U,F〉 is an injective
function f : V −→U satisfying the condition (i, j) ∈ E ⇒
(f (i), f (j)) ∈ F. Similarly an induced subgraph isomor-
phism between a pattern G = 〈V,E〉 and a target H =

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

4 Search-Tree Size Estimation for the Subgraph Isomorphism Problem

〈U,F〉 is an injective function f : V −→ U satisfying the
condition (i, j) ∈ E⇔ (f (i), f (j)) ∈ F.

The two variations of the problem are demonstrated in
Fig. 1. From the algorithmic point of view it does not matter
if we address the induced or the regular subgraph isomor-
phism. All the algorithms can find both types of isomor-
phisms with only minor modifications.

Applications of pattern analysis using the subgraph iso-
morphism problem abound in various fields, such as chem-
istry [1, 2], social network analysis [14], and computer vi-
sion [16] . Moreover, in these domains graph databases
are replacing the traditional relational databases [3]. For an
extensive review of graph matching for pattern recognition
see [9].

Unfortunately, the subgraph isomorphism problem is
computationally very difficult, as it has been shown to be
NP-complete [10]. Being such a fundamental problem,
there are many attempts to overcome this theoretical barrier,
and the state-of-the-art algorithms can easily solve non-
trivial problems.

G

H

Fig. 1 Finding a pattern graph G in the goal graph H. The graph
G is a subgraph in H, but it is not an induced subgraph in H.

2.1. Algorithms

Since this is one of the fundamental problems in com-
puter science, many algorithms have been proposed to solve
it. The oldest algorithm that is still a reference for newer ap-
proaches is the Ullmanns’ algorithm [18]. For many years it
was also considered the best for the problem at hand. But it
was also treated to be of more theoretical nature, and there
were not many attempts to engineer this backtracking into
faster algorithms.

Because computers got much faster, and the applica-
tions started to deal with more data organized as graphs,
the interest for this problem has been increasing, especially
in the pattern matching community. New and improved al-
gorithms have started to emerge [7, 11, 17, 19], showing re-
markable results on larger and larger instances.

Even though these algorithm utilize very different tech-
niques, all of them follow the same basic pattern of a back-
track search. We can summarize this pattern as a general
framework, and we will use it as the basis for our experi-
ments The framework is given in Algorithm 2 and can be
described as follows.

Besides the input pattern G and target H, the input to
this algorithm is an ordering of vertices in G and the current
(partial) assignments (iso) which grows and shrinks as the
algorithm traverses the search tree. At each step (node of

the search tree), the vertex v is the active vertex. This vertex
is defined as the first vertex in the current order. The func-
tion getCandidates retrieves vertices from H which have
the same connectivity in H as v has in G, based on the al-
ready assigned vertices in iso. When we reach the leaf of
a search tree, the set of candidates is exactly the number
of subgraph isomorphisms at that position. If we are not at
the leaf we try to assign v to every possible candidate and
proceed recursively.

Fig. 2 countIso() - counting subgraph isomorphisms with a basic
backtracking algorithm.

As mentioned earlier, the most influential factor for the
speed of the algorithms is the order in which vertices of G
are mapped onto H. This impact of this parameter is the
easiest to see in the Ullmanns’ algorithm, where the ver-
tices of G are simply ordered by their degree (in descend-
ing order). If we would use a random order instead, even
small instances become impossible to solve (i.e. do not fin-
ish in a reasonable amount of time). So the impact of us-
ing better orders is felt much more than of any other prun-
ing technique in this algorithm. Other algorithms use more
sophisticated orders, usually taking into account also the
neighborhood of the currently chosen vertex and other pa-
rameters, but the impact on the tree size is similar than with
the Ullmanns’ algorithm..

Since this is a very impactful technique for reducing
the search-tree size, there have been also more in-depth re-
search done, such as in [4, 6]. We will not handle all the
available orders but instead focus on a subset of them, since
our goal is not to exhaustively evaluate various orders but
instead test how good can we predict the performance of
different orders.

From a large set of available orders we chose three ba-
sic orders, which utilize very local information, and two
orders which use more information about the structure of
the graph. The three basic orders are as follows.

Degree (DEG) The order which was already proposed by
Ullmann in [18] is the ordering of the pattern vertices
by their degree (descending). The logic behind this
ordering is that the nodes with the highest degree can
usually be mapped to the fewest goal nodes, which

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 18, No. 4, 2018 5

reduces the search space already at the top levels of
the search tree.

Depth-first search order (DFS) This order follows from
a simple traversal of the tree in a depth-first manner.
The first vertex is always the one with the highest de-
gree. The trace of visited nodes gives the final order.

Breadth-first search order (BFS) Same logic as the DFS
order, but with a breadth-first search.

The two more advanced orders can be viewed as an exten-
sion of BFS. They start with the highest degree vertex and
put the neighborhood in the set of active vertices. This set
is used to choose the next vertex based on a specific fea-
ture. Once a vertex is chosen, all its neighbors are added
to the set of active vertices. This process is repeated until
the set of active vertices is empty. The criteria by which the
vertex is chosen from the active set defines the order more
specifically.

Subdegree (SUB-DEG) The subdegree of a vertex is the
number of edges from this vertex to the nodes in the
set of vertices already chosen in the order. Or more
precisely

dorder(v) = |{u ∈ order|(v,u) ∈ E}|
For this order, the vertex with the maximal subdegree
is chosen from the active set of vertices.

Clustering (CLUST) Another criterion for the choice of
a vertex from the active set is the clustering coeffi-
cient. This is a measure which quantifies how close
the neighborhood of a node is to being a clique. This
coefficient for a vertex vi is computed as:

ci =
|
{

e jk : e jk ∈ E ∧ v j,vk ∈ Ni
}
|

ki(ki−1)

where Ni is the set of neighbors of vi and ki = |Ni|.
Choosing vertices with a higher clustering coefficient
also reduces the search space, because more edges in
the neighborhood means more restrictions to the set
of candidates (i.e. less candidates) in the assignment
phase of the backtracking algorithm.

ad

b

f g

i

c he

j

Fig. 3 An example graph, to show the different orderings. The
DEG order on this graph is a,g,d,b,c, i,h, f ,e, j, the DFS and

BFS order are coincidentally the same a,b,d,c,e, f ,g,h, i, j, the
SUB-DEG order is a,d,b,c, f ,g,h, i,e, j and the CLUST ordering

is a,b,c,d,e, f ,g,h, i, j.

Figure 3 shows an example graph with the 5 described
orders.

As we will see in the empirical evaluation, none of these
5 orders dominates others in the sense that it would consis-
tently result in the smallest search trees. Any of these orders
can be the best on some instances and our goal is to find the
best one before the actual execution of the algorithm.

3. SEARCH-TREE SIZE ESTIMATION

In this section we will describe the method for estimat-
ing the search tree size and the specific choices we made in
order to use it for the subgraph isomorphism search.

3.1. Knuth’s method

Since heuristic sampling is the extension of Knuth’s
method, we give a quick description of this interesting ap-
proach. In a nutshell, the method traverses the tree by
choosing a random path until reaching a leaf of the tree.
This random walk yields one estimation of the tree size as:

Sest = 1+b1 +b1b2 +b1b2b3 + . . . ,

where bi is the number of children the node at depth i has
(i.e. the branching rate of that node, see Figure 4). By
repeating this random walk and averaging the result, the es-
timation quickly converges very closely to the actual size
on many problems.

...
...

...
...

...
...

...

b3 = 4

...
... b2 = 3

b1 = 5

Fig. 4 A random walk in the tree, where the branching at each
level gives an estimate of the overall tree size. This is the Knuth’s

estimation method in a nutshell.

Our first attempts of using Knuth’s method for subgraph
isomorphism did not yield satisfactory results. The main
reason for this is that the simple sampling assumes a very
homogeneous structure of the search-tree. Such structure is
present in many classical search problems (such as games
and basic combinatorial problems), but it is definitely not
present in more complex search problems where the struc-
ture varies between branches significantly.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

6 Search-Tree Size Estimation for the Subgraph Isomorphism Problem

3.2. Heuristic sampling

Heuristic sampling (HS) addresses the issues of Knuth’s
method. Instead of following a single path in the tree, HS
proceeds on many representative paths at the same time.
This approach captures better the heterogeneous nature of
search trees.

The central concept of HS is a heuristic function h : N→
P , N being the set of nodes of the search tree and P be-
ing a partially ordered set. This function is called a strat-
ifier and it should be designed in such a way to reflect the
main characteristics of the nodes in the search tree. Intu-
itively, it is a function which maps each node into a value
that should describe the shape of the subtree rooted at that
node. Two nodes mapped to the same value by the stratifier
should have similar (similarly sized) subtrees.

With the stratifier given, the method must now find an
estimation for the number of nodes for each α ∈P . And
from such estimations the entire size of the tree can simply
be computed as:

Sest = ∑
α

sα .

In order for HS to be successful on subgraph isomor-
phism problem, we had to find a suitable stratifier. One
which captures the shape of the tree well enough, but also
does not degenerate into a function that has to search the
entire tree. We chose to use the function

h(n)→ (depth,degn),

where depth is the depth at which the node is located and
degn is the number of children the node has. So two nodes
will be considered equal if they are at the same depth and
they have the same number of children.

The details of the entire procedure are given in Algo-
rithm 5. The method initiates a priority queue, which will
serve as the data structure for holding sample nodes of the
search tree. The priority of the elements in the queue is
h(n), and the dequeuing removes the element with the max-
imal value of h. At each step of the iteration, one node is
retrieved from the queue and all its children are generated.
These children (m) are added to the queue if their h(m) is
not yet present in the queue otherwise the weight of the el-
ement in the queue is increased (we found a new instance
for this stratum) and the old node in the queue is replaced
by the newly found with a probability w

ws
, where w is the

weight of the parent node and ws is the weight of the newly
generated node. A detailed theoretical justification of this
method can be found in [5].

Fig. 5 Heuristic sampling in more detail.

4. EMPIRICAL EVALUATION

In the previous section we described two methods for
estimating the search-tree size. We mentioned that heuristic
sampling is an extension of the basic method developed by
Knuth in order to overcome the shortcomings of the method
when dealing with more heterogeneous search trees. Our
first goal is to demonstrate that the Knuth’s method is not
suitable for the subgraph isomorphism problem. On a cho-
sen set of problem instance we obtained the exact sizes of
the search tree and both the estimates of the Knuths method
and the HS estimate. By showing the large qualitative dif-
ference between these two estimates we can justify the dis-
missal of the Knuths method in our further experiments.
Our final goal is to demonstrate that HS can be used as a
practical subroutine for a dynamic choice of the ordering
for a specific problem instance.

4.1. Experiment Setup

The implementation of this experimental part was done
in python, using the igraph library [12] to tackle the basic
graph operations and algorithms. In order to fully control
the execution of the backtracking algorithm we reimple-
mented the basic algorithm and we included a few simple
pruning techniques. This enabled us to accurately count the
tree size and also to implement heuristic sampling since it
needs to precisely follow the algorithm it is estimating.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 18, No. 4, 2018 7

Fig. 6 One of the pattern graphs that we used to search for in
larger graphs.

For testing the subgraph isomorphism algorithms, one
of the most widely used benchmark set is the Amalfi test-
set [13]. It contains a large amount of different graphs, from
Erdös-Renyi random graphs, to highly regular meshes. For
this evaluation we chose a subset of 100 instances from this
benchmark set. All the chosen graphs are random Erdös-
Renyi graphs. The main reason for the choice of such a
limited subset is that larger instances are too difficult for
such a basic backtracking procedure without more sophis-
ticated pruning techniques. So in order to obtain the exact
solutions for all the instances, we had to choose smaller
graphs.

Fig. 7 The relative error of the Knuth’s method on each of the
100 instances.

Fig. 8 The relative error of heuristic sampling on each of the
100 instances.

We mentioned earlier that HS addresses the weaknesses
of Knuth’s method, since it does not assume the search
tree to be very homogeneous and tries to capture this het-
erogeneity by following several different paths. Our first
experiment will demonstrate this empirically. Fig. ?? and
Fig. 8 show the relative error on every problem instance for
the Knuth’s method and for heuristic sampling respectively.
By relative error we mean

|S−Sest

S
|,

where S denotes the search-tree size, and Sest denotes the
estimated search-tree size. The qualitative difference be-
tween the two methods is obvious, since the error differs by
nearly two orders of magnitude, i.e., the maximal error of
HS is 0.2 (20%), whereas the error of the Knuth’s method is
more that 20. Such errors are unacceptable, so the Knuth’s
method is omitted from further experiments.

4.2. Evaluation of HS

We first ran the backtracking algorithm on all instances
and measured the size of the search tree for each of them.
We could also measure the execution time, since it is nicely
correlated with the size of the tree. This is simply because
the order remains static during the execution and therefore
there is no particular overhead for the computation of differ-
ent orders. But it is better to choose a machine independent
measure, which makes the evaluation more robust, so the
tree size was the most natural choice. To obtain a more re-
liable number, each estimation was repeated 100 times, and
the average was computed.

First let us demonstrate that these five orders exhibit a
large variance in performance on different instances. Fig-
ure 9 shows which order was the winner on 100 instances of
the benchmark set. We can see that all orders have instance
on which they yield the smallest search tree. The cluster-
ing order is the winner on only one instance, but the other
orders are significantly more successful.

Fig. 9 The best orders for each tested instance. Every order is
the best on at least one input instance, showing the diversity and

importance of predicting the performance for each order.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

8 Search-Tree Size Estimation for the Subgraph Isomorphism Problem

Figure 10 shows also how the sizes of the search trees
differ for each instance. The graph shows a scatterplot of
relative differences for each instance:

smax− smin

smin
,

where smax,smin are the largest and smallest tree sizes be-
tween the 5 orders. The y-axis in logarithmic, since in
some instances the largest tree size was more than 100 times
larger than the smallest one. For the majority of instances
the difference is more than 100%, which in practice means
that in the worst case, the algorithm would run much longer
than in the best case.

Fig. 10 The scatterplot shows the relative difference of the tree
size between the best order and worst order on each of the 100

instances. The y-axis is logarithmic.

Next, we use the heuristic sampling for predicting the
tree size for each test instance and each order, altogether
500 predictions. In order to compare the efficiencies be-
tween instances we compute the relative error

|T |−Sest

|T |
,

where T is the tree size and Sest is the estimated size. Fig-
ure 11 shows the distribution of these relative errors for the
500 predictions. We can see there are a few predictions that
were not that good, but the vast majority of predictions is
within 20% of the actual size of the tree.

Since we are investigating if the sampling can be suc-
cessfully used as a predictor in the backtracking algorithms,
the error in the prediction is not the most important fac-
tor, What is more important is the ranking accuracy of the
method. For each instance we are interested in finding the
best possible order in advance. For this reason we now
show the distribution of the relative difference between the
best tree size, and the tree size of the chosen order (both
actual, not the predictions):

|Tbest |− |Tchosen|
|Tbest |

.

The results for this measurement are shown in Fig-
ure 12. As we can see, more than 80% of all chosen orders
were either exactly the best order or within 5% of the best

order. On one instance the predicted winner performed very
badly (more than twice the size of the actual best order), but
on the rest of the instances the predictions are very feasible
for practical applications.

Fig. 11 The histogram of relative errors for each prediction (100
instances and 5 orders, i.e. 500 predictions). Two predictions

were more than twice the actual number of tree nodes, however
most of the predictions were very accurate.

Fig. 12 The relative difference between the chosen order and the
best order for an instance. In 80 % of cases the chosen order in

either the best one or within 5% of the best. In one case the
chosen order was twice as bad as the best one.

sectionConclusions and future work
Subgraph isomorphism is a classical problem in theoret-

ical computer science and due to an explosion of practical
application of pattern matching and analysis, it is becoming
a highly practical problem as well.

Being an NP-hard (or the counting version even #P-
complete), we do not expect any fast or even feasible al-
gorithms for solving the general case of the problem. How-
ever, many pragmatic approaches achieve remarkable re-
sults, making many problem instances (sometimes even the
majority) much more practical than its theoretical proper-
ties would suggest.

In the world of heuristics, the problem is attacked with
various rules, subroutines, pruning techniques, etc. This
constitutes a bag of different algorithms and there is always
a dilemma which choice of parameter makes the best algo-
rithm. Researchers in this area try to find the best parameter
configuration by looking at the average performance on a

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 18, No. 4, 2018 9

benchmark set of problem instances. However, by measur-
ing the average performance, the chosen algorithm might
not be best for a particular instance. The optimal strategy
would be to choose the parameter configuration for every
instance, if one would have an oracle for the performance.
Exact oracle for the performance of an algorithm, of course,
do not exist (in general), so we have to resort to estimation
techniques.

Backtracking algorithms are the most common ap-
proach to solving the subgraph isomorphism algorithm.
One of the most influential parameters on the running time
is the ordering of the vertices of the pattern graph. There
are many possible orderings and their efficiency varies sig-
nificantly from instance to instance. We chose to investi-
gate the possibility of predicting the best vertex ordering
for each instance in advance. Luckily, various techniques
for estimating the search-tree size (which is proportional to
the running time) have been developed. We chose to inves-
tigate Knuth’s basic estimation method and a method called
heuristic sampling which addresses the weak points of the
basic estimation.

We managed to adapt heuristic sampling for the sub-
graph isomorphism problem and first show that it signifi-
cantly outperforms the estimation accuracy over the Knuths
method. Furthermore, we showed the practical potential of
heuristic sampling as the estimator for the best vertex or-
dering on a particular problem instance.

This paper is an initial test of the feasibility of the pro-
posed estimation approach. In order for this method to
become practical we need to involve all the pruning tech-
niques of the more advanced algorithms and see if the sam-
pling is so efficient also in that context. Another research
direction is the possibility for new stratifiers in the heuristic
sampling. Stratifiers with even more information about the
underlying solution could better describe the shape of the
tree, resulting in more accurate estimations.

And finally, since the sampling gives us a lot of informa-
tion about the future performance of the algorithm it could
also be used to make the ordering adapt to changes it sees
ahead. During the search, the sampling could provide an
estimate of the search tree still to be explored. If the size of
the tree is too big, the order can change and thus dynami-
cally adapt to different parts of the graph.

REFERENCES

[1] Dimitris K. AGRAFIOTIS, Victor S. LOBANOV,
Maxim SHEMANAREV, Dmitrii N. RASSOKHIN,
Sergei IZRAILEV, Edward P. JAEGER, Simson
ALEX, and Michael FARNUM. Efficient Substruc-
ture Searching of Large Chemical Libraries: The
ABCD Chemical Cartridge. J. Chem. Inf. Model.,
2011.

[2] John M. BARNARD. Substructure searching meth-
ods: Old and new. J. Chemical Information and Com-
puter Sciences, 33(4):532–538, 1993.

[3] S. BATRA and C. TYAGI. Comparative analysis of
relational and graph databases. Int’l J. Soft Comput-
ing & Engineering, 2012.

[4] Vincenzo BONNICI and ROSALBA Giugno. On

the variable ordering in subgraph isomorphism algo-
rithms. IEEE/ACM Trans. Comput. Biol. Bioinformat-
ics, 14(1):193–203, January 2017.

[5] Pang C. CHEN. Heuristic sampling: A method
for predicting the performance of tree searching pro-
grams. SIAM Journal on Computing, 21(2):295–315,
1992.

[6] Uroš ČIBEJ and Jurij MIHELIČ. Search strategies for
subgraph isomorphism algorithms. In International
Conference on Applied Algorithms, ICAA, pages 77–
88, 2014.

[7] Uroš ČIBEJ and Jurij MIHELIČ. Improvements to
ullmann’s algorithm for the subgraph isomorphism
problem. International Journal of Pattern Recog-
nition and Artificial Intelligence, 29(07):1550025,
2015.

[8] Uroš ČIBEJ and Jurij MIHELIČ. Heuristic sampling
for the subgraph isomorphism problem. In 2017 IEEE
14th International Scientific Conference on Informat-
ics, pages 57–62, Nov 2017.

[9] D. CONTE, P. FOGGIA, C. SANSONE, and
M. VENTO. Thirty years of graph matching in pattern
recongnition. Int’l J. Pattern Recognition and Artifi-
cial Intelligence, 18(03):265–298, 2004.

[10] Stephen A. COOK. The complexity of theorem-
proving procedures. In Proc. 3rd annual ACM sym-
posium on Theory of computing - STOC ’71, pages
151–158. ACM Press, 1971.

[11] Luigi P. CORDELLA, Pasquale FOGGIA, Carlo
SANSONE, and Mario VENTO. A (sub) graph iso-
morphism algorithm for matching large graphs. IEEE
transactions on pattern analysis and machine intelli-
gence, 26(10):1367–1372, 2004.

[12] Gabor CSARDI and Tamas NEPUSZ. The igraph
software package for complex network research. In-
terJournal, Complex Systems:1695, 2006.

[13] M. De SANTO, P. FOGGIA, C. SANSONE, and
M. VENTO. A large database of graphs and its
use for benchmarking graph isomorphism algorithms.
Pattern Recognition Letters, 24(8):1067–1079, May
2003.

[14] Wenfei FAN. Graph pattern matching revised for so-
cial network analysis. In Proc. 15th International
Conference on Database Theory - ICDT ’12, page 8.
ACM Press, March 2012.

[15] Donald E. KNUTH. Estimating the efficiency of back-
track programs. Technical report, Stanford, CA, USA,
1974.

[16] Jianzhuang LIU and Yong Tsui LEE. Graph-based
method for face identification from a single 2D line
drawing. IEEE Trans. Pattern Analysis and Machine
Intelligence, 23(10):1106–1119, 2001.

[17] Christine SOLNON. AllDifferent-based filtering
for subgraph isomorphism. Artificial Intelligence,
174(12-13):850–864, August 2010.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

10 Search-Tree Size Estimation for the Subgraph Isomorphism Problem

[18] Julian R. ULLMANN. An algorithm for subgraph iso-
morphism. Journal of the ACM (JACM), 23(1):31–42,
1976.

[19] Julian R. ULLMANN. Bit-vector algorithms for
binary constraint satisfaction and subgraph isomor-
phism. Journal of Experimental Algorithmics (JEA),
15:1–6, 2010.

Received April 17, 2018, accepted July 10, 2018

BIOGRAPHIES

Uroš Čibej received his doctoral degree in Computer Sci-
ence from the University of Ljubljana in 2007. Currently,

he is with the Laboratory of Algorithmics. His research in-
terests include location problems, distributed systems, com-
putational models, halting probability, graph algorithms,
and computational complexity.

Jurij Mihelič received his doctoral degree in Computer
Science from the University of Ljubljana in 2006. Cur-
rently, he is with the Laboratory of Algorithmics, Faculty
of Computer and Information Science, University of Ljubl-
jana, Slovenia, as an assistant professor. His research in-
terests include algorithm engineering, combinatorial opti-
mization, heuristics, approximation algorithms, and uncer-
tainty in optimization problems as well as system software
and operating systems.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

