
Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020, 19–26, DOI: 10.15546/aeei-2020-0009 19

TOWARDS ON EXPERIMENTAL COMPARISON OF THE M-TREE INDEX STRUCTURE
WITH BK-TREE AND VP-TREE

Gergő GOMBOS, János Márk SZALAI-GINDL, István DONKÓ, Attila KISS
Department of Information Systems, ELTE Eötvös Loránd University, Budapest, Hungary,

E-mail: { ggombos, szalaigindl, isti115, kiss }@inf.elte.hu

ABSTRACT
In our previous paper, we showed the M-tree index [7] using GiST in the PostgreSQL database. In this paper, we present that result

and we extend that with some preliminary experimental results with other indexes. We compare the M-tree index with the BK-tree and
the VP-tree indexes. These can be work in metric space with edit distance, that can be used to compare DNA sequences or melody of
songs. In this paper, we compare the indexes in PostgreSQL. We use the range based queries to analyze the performance of the indexes.
The result shows that the M-tree index is faster than the other two indexes.

Keywords: Databases, Indexes, M-tree, Metric space, PostgreSQL, GiST

1. INTRODUCTION

The most important task of the databases is to answer
the queries quickly. They can achieve a low response time
with indexes, which are used during the search. The most
index made for the exact match and they took advantage
of the sortable property of the data. If we want to search
a sub-sequence and we know only just the part of the sub-
sequence then these methods are ineffective. For example,
this problem can be found in the genetic database, where we
want to find some DNA sequence, or the music database,
where we want to find a song based on a melody.

These problems can be solved using the metric space,
where the index is based on the distance between the items.
The edit distance (or Levenshtein-distance) is one of the
well-known metrics which is used in metric space. This
method counts the operations on an item to reach another
one. This is the distance between the two items. The op-
erations are the insertion, removal or replace one character.
This solution is useful for data that have different length of
item, because the removal and the insertion can change the
length of the item.

In our previous work [9] we presented an M-tree [5] im-
plementation that uses the edit distance too. In this paper,
we present the implementation again and extend the paper
with a comparison with other indexes, like BK-tree [3] and
VP-tree [17]. These index structures also can be work in
the metric space.

The source codes of the project are available at [9] .
This paper presents some related work related to met-

ric space and index-tree structure (Section 2). In Section
3, we present the used technologies: M-tree, PostgreSQL,
GiST. A picksplit algorithm is needed for the GiST, and we
implemented more with different strategies. We describe
these methods in Section 4. In the next section (Section 5)
we present the index building time, the response time of the
K nearest neighborhood and the range queries and the com-
parison of the VP-tree, BK-tree and the M-tree with range
queries. Section 6 presents some possible use cases of the
M-tree. Finally, we write our conclusions and future works
in Section 7.

2. RELATED WORK

There are more results in metric space usage for data in-
dexing. Costa et al. [6] use various metric spaces, including
VP-tree in music database for melody search. They use two
types of metric space: city-block and euclidean distance. In
our case, we used the edit distance.

Skalak et al. [14] use the VP-tree in a music database
also in their paper. They convert the songs with unquantized
melodic encoding and used a simple metric for melodic
comparison. In their solution, they split the song files into
sequences and built the VP-tree on it. When we compare
the three trees we also split the song to subsequence.

Nielsen et al. [13] use the VP-tree in computer vision to
find images. They changed the VP-tree to able to use the
Bregman divergences, which are efficiently on the nearest
neighbor queries.

The VP-tree was originally introduced by Yianilos et
al. [17]. That is built on the concept of partitioning the
metric space in terms of distance thresholds from specific
entries selected as so-called "vantage-points". The separa-
tion results in two groups for each vantage-point, one that
is closer than the threshold and the other one that contains
the points that are further away. Those points that share
the same category with regard to several vantage-points are
likely to be close as well. Later, several variations appeared,
such as multiple VP-trees [2] or VP forests [18].

Other solutions use the BK-tree [3] [1] which is spe-
cialized for distance metrics with integer values in a prefer-
ably small range (often used with edit distance) so that the
nodes can be distributed into groups based on their distance
to their ancestor. In our case, we use the M-tree for index-
ing the music data in metric space. The idea of the M-tree,
as introduced by [5] and [4].

We used the PostgreSQL database to compare the in-
dices. This database has two frameworks that help the
user to create own index-tree. These frameworks are called
GiST (Generalized Search Tree) [10] and SP-GiST (Space-
Partitioned Generalized Search Tree) [8]. The second one
provides space-partitioning capabilities.

Keyvanpour et al. [12] analyzed the various index solu-
tions for multimedia data in an analytical view. In contrast
our paper we present some experimental results. Other re-

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

20 Towards on experimental comparison of the M-tree index structure with BK-tree and VP-tree

searchers: Karsdorp et al. [11] try to solve the similarity
searching problem using neural network.

3. TECHNOLOGIES USED

3.1. M-tree

The main index structure of M-tree is described in [5]. It
is based on the idea of attaching a so called covering radius
to the nodes in the search tree that represent the maximal
distance of any of the entries in any subtree of that branch.
A simple illustration can be seen on Figure 1, which dis-
plays the tree structure using arrows, shows the covering
radii belonging to the nodes with red dotted lines (the ra-
dius of the largest node is marked by "R") and has some
arbitrarily placed blue dots to represent the stored informa-
tion. Do not be confused by the fact that this image resides
in a two dimensional space, there is no absolute position
for the nodes, neither for the entries, only their relative dis-
tances can be calculated.

By indexing data in this manner the opportunities to
speed up queries arise by being able to make sure decisions
during lookup without visiting all the leaves. For example
if an entire subtree (marked by the letter "A" on the figure)
fits inside the range being searched for (marked by "Q" in
the figure), because its node is closed to the center of the
query than the radius of the query minus the radius of the
node, all of its content can surely be included in the results.
On the other hand if it can be decided that an entire subtree
(marked by the letter "B" on the figure) cannot satisfy a con-
dition and thus the chance of an overlap can be ruled out,
because its node is further apart from the center of the query
than the sum of their radii, that branch can be completely
cut off from the search. In the third case, where a subtree
(marked by letter "C" on the figure) is neither completely
inside, nor fully outside the search region, its children have
to be further processed.

A
Q

B

C

R

Fig. 1 Illustration of the M-tree structure, where blue dots are
representing the entries storing the actual information, the red
dotted lines (the longest of which is denoted by "R") are the

covering radii of the nodes and the green dashed region (denoted
by "Q") is an example for a range based query.

3.2. PostgreSQL

We chose PostgreSQL1 as the database management
system to give a framework because of its support for GiST
(Generalized Search Tree) based index development2 that
fit the needs and constraints of the M-tree architecture. Us-
ing the varlena extensible struct (a variable length array
type that stores its size in the first few bytes and its contents
in the rest of its allocated space) as a base we defined our
own datatype that includes a covering radius and the actual
data in the flexible array member.

3.3. GiST

The GiST data structure is an abstract tree structure
which can be considered as the generalization of other trees,
such as the more well known B-tree and R-tree or in this
case the M-tree. It was what permitted the extension of the
system with a new index type. For that we needed to imple-
ment several functions.

The ones that belong to the index creation process were:

• union: Given a set of entries it creates a single node
that represents all of them by selecting one of them
and assigning a covering radius to it that is equal to
the distance of the furthest object from the selected
one and thus contain all the entries. We chose to im-
plement it in a way that tries to select the node clos-
est to the imaginary center (only intuitively, as such
a center does not exists in a metric space), meaning
it has the lowest possible maximal distance to every
other node, so that the covering radius will be mini-
mal.

• picksplit: When the count of a node’s descendants
reaches a certain threshold set by the database man-
agement system (usually in connection with the page
size), it needs to split that node and distribute its chil-
dren between the newly promoted items. This algo-
rithm is responsible for selecting the two nodes that
should be promoted in a way that ideally would later
benefit the queries, for example by minimizing the
overlap between the two covered areas.

• penalty: This method calculates how much the ef-
ficiency of the index would drop if an item were to
be inserted under a certain node. This is estimated by
calculating the required increase in covering radius to
keep the correctness of the index. One of the advan-
tages that [5] and [4] mention is the ability to handle
dynamically changing data as opposed to other in-
dex structures which sometimes can only operate ef-
ficiently on static information. When inserting a new
item the values provided by this function contribute
the information needed for choosing a good path.

The others being utilized during queries:

• consistent: The purpose of this method is to de-
termine whether a key that’s stored in a node of the
tree is consistent with the current query, meaning that

1https://www.postgresql.org/
2https://www.postgresql.org/docs/current/gist-extensibility.html

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://www.postgresql.org/
https://www.postgresql.org/docs/current/gist-extensibility.html

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 21

its subtrees can potentially contain leaves that match
the specified criteria. If this test is negative, then the
whole branch can be pruned from the actual search
tree. There is actually also a second value returned
that serves the purpose of avoiding unnecessary com-
parisons by allowing the implementation to tell the
system when it can be determined from the observa-
tion of only one node that all the leaves belonging to
its descendants must satisfy the given condition, thus
do not need to be tested individually and that entire
branch can be included in the results.

• distance: As M-trees operate on values residing in
metric spaces there always exists a distance function
that can determine how far two values are from one
another. By providing this function we allow the in-
dex structure to be used for ordering operators, which
is essential for K nearest neighbor queries as that
needs to find entries based on their distance to a given
center value, thus compare their separation from the
midpoint to each other.

There would have also been four optional functions that
could have been implemented (and can potentially be later
added if needed) that were not necessary for our use case:

• same: If the representation of the data would not be
injective with regards to its actual contents then this
function could serve the purpose of defining when
two entries should be considered equal.

• compress: In cases where it would be desirable to
lower the amount of storage being used by the index
structure, the internal tree nodes could use a smaller
type than the actual data by implementing a compres-
sion algorithm in this method.

• decompress: When compression is applied to the
stored data this function would provide the means of
reconstructing the information that is needed by the
other methods. (That is in case of internal nodes not
necessarily the full original data.)

• fetch: In contrast to decompress this function would
be responsible for fetching the lossless information
where it is required that was initially compressed.

4. PICKSPILT STRATEGIES

We obtained test data in the form of ABC music non-
tation3 (which seemed fitting for the task because of its
simplicity) from a compilation made by professor José Fer-
nando Oliveira4 from the University of Porto. His col-
lection can be found here: http://www.atrilcoral.
com/Partituras_ABC/index_abc.htm This data was
stripped down into a much simplified representation by only
taking the notes and disregarding all rhythm related infor-
mation.

The set contained 19296 entries which we shuffled to
avoid organizational grouping bias and then generated dif-
ferent sized test sets from. (To be exact, with 1000, 3333,

6666, 10000, 13333, 16666 and the last one with all the
19296 entries.) We then built the index on these datasets
using different heuristics for the picksplit algorithm and
measured their performance on range based and K near-
est neighbor queries. After repeating this randomization
and measurement process (the data points around which the
queries were placed were randomly selected from the set as
well) several times we averaged the results and compared
the different strategies to each other and the sequential scan
as a baseline.

The testing was conducted on a machine equipped with
an Intel R© CoreTM i5-650 CPU and 4GB of RAM running
Ubuntu 16.04.

As it has been already explained above, the goal of a
picksplit algorithm is to chose two representants from the
group of nodes to be split, among which when the rest are
distributed, queries could be performed efficiently.

The eight competing versions, including three determin-
istic, one completely random and finally four sampling type
of strategies were:

• PicksplitFirstTwo - Simply just choosing the
first two entries in the list to be promoted.

• PicksplitMaxDistanceFromFirst - Searching
through the list of entries and choosing the first one
and the one that is furthest apart from it in hopes of
creating as little overlap as possible.

• PicksplitMaxDistancePair - Iterating on the pre-
vious version this searches for the two nodes in the
list that have the highest possible distance out of all
the combinations.

• PicksplitRandom - Choosing two entries randomly
from the list.

• PicksplitSamplingMinCoveringMax - This strat-
egy randomly picks two nodes, calculates the split
that would occur if those two were to be promoted
and stores the bigger covering radius of the two. Af-
ter that it repeats the procedure several times (in our
implementation that is a 100 times) by taking another
two nodes and overwriting the results if those pro-
duce a smaller maximal radius.

• PicksplitSamplingMinCoveringSum - Takes
samples similarly to the previously described
method, but instead of trying to minimize the bigger
radius of the two, it aims to find the lowest possible
sum of the radii.

• PicksplitSamplingMinOverlapArea - This strat-
egy calculates the imaginary overlap between the two
potential regions based on their radii and the distance
between them and aims to find a pair that produces a
minimal intersecting area.

• PicksplitSamplingMinAreaSum - As a variation
of the PicksplitSamplingMinCoveringSum strat-
egy, instead of simply just adding together the radii,

3http://abcnotation.com/
4https://sigarra.up.pt/feup/en/func_geral.formview?P_CODIGO=209980

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www.atrilcoral.com/Partituras_ABC/index_abc.htm
http://www.atrilcoral.com/Partituras_ABC/index_abc.htm
http://abcnotation.com/
https://sigarra.up.pt/feup/en/func_geral.formview?P_CODIGO=209980

22 Towards on experimental comparison of the M-tree index structure with BK-tree and VP-tree

this method calculates some sort of a collective area
(as if the nodes where circles in two dimensions) de-
fined by the sum of their squared radii.

As an example, Figure 2 illustrates a situation in
which two strategies would prefer different options.
If presented with the possibility of splitting the node
marked with A in the way shown labeled by B or
C, the PicksplitSamplingMinCoveringSum strat-
egy would favor B, as adding the two resulting radii
together would result in a lower value there, while
PicksplitSamplingMinCoveringMax would rather
choose C, because the bigger radius of the two is smaller in
that case.

A

CB

Fig. 2 Illustration of two possible options when distributing the
contents of a node during a picksplit operation that are favored in

two different heuristics.

5. RESULTS

When comparing these different possible heuristics for
splitting we found that there was a visible trade-off be-
tween the time it takes to build an index and the query
performance afterwards. Increasing the complexity of the
algorithm responsible for selecting the nodes to promote
generally resulted in a structure that was better suited for
range based queries. There was no significant difference
when comparing the K nearest neighbor performance, all
the strategies far outperformed the sequential scan and were
relatively close to each other.

As expected, the sequential scan performed linearly in
terms of the amount of data in both tests, as it always had to
traverse the entire database in order to provide the queried
results.

5.1. Index building times

One of the drawbacks of our approach are the slow ini-
tial index building times, which are obviously nonexistent
when doing sequential scans, but this is eased by the fact
that one of the advantages of the nature of this M-tree im-
plementation related to other spatial index structures (as it

was already explained a bit in section 3) is that they are
more suitable for data that is expected to change. There are
approaches that can only work on static data (thus requiring
a rebuild of the index whenever the underlying information
changes), but in contrast to those the M-tree can also per-
form efficient insertions afterwards.

Usually the heuristic that minimizes the sum of the two
covering radii (PicksplitSamplingMinCoveringSum)
when splitting took the most time to build. Taking a look
into it while it processed the data what became clear was
that it tends to produce deeper trees, because it favours un-
even splits between the two promoted nodes, as one of the
covering radii being small and the other one bigger seems to
result in an overall lower sum than when the two are more
close to being equal.

Most likely a similar reasoning explains what happens
with PicksplitSamplingMinOverlapArea, since it can
achieve zero overlap by setting one of the radii to zero, and
this results in a heavily leaning tree.

The PicksplitRandom strategy seems to have the
fastest index building time followed by the deterministic
algorithms, while the sampling type of heuristics are the
slower ones, as those have to repeat the same calculations
over and over again.

 1

 10

 100

 1000

 10000

 0 5000 10000 15000 20000

Ex
ec

ut
io

n
tim

e
(s

)

Sample size

PicksplitFirstTwo
PicksplitMaxDistanceFromFirst
PicksplitMaxDistancePair
PicksplitRandom
PicksplitSamplingMinCoveringMax
PicksplitSamplingMinCoveringSum
PicksplitSamplingMinOverlapArea
PicksplitSamplingMinAreaSum

Fig. 3 The time it took to build the index with different splitting
strategies for several data sample sizes.

5.2. Range based queries

The execution times for range based queries can be ob-
served on Figure 4.

This first type of query that the M-tree supports is one
where we would like to access the neighbors of a given
entry within a certain radius. The execution times where
greatly reduced for smaller radii (a), as there were fewer
overlaps and greater sections of the tree could be avoided
while searching. As expected the performance benefits start
to lessen when the radius is increased (b), because fewer
branches can be pruned.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 23

As it was already mentioned in the previous section, the
PicksplitRandom strategy took the least time to build the
index, and that seems to relate to the quality of the structure,
as it can be seen, it was the one that provided the smallest
amount of improvement during the range based queries.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000

Ex
ec

ut
io

n
tim

e
(m

s)

Sample size

PicksplitFirstTwo
PicksplitMaxDistanceFromFirst
PicksplitMaxDistancePair
PicksplitRandom
PicksplitSamplingMinCoveringMax
PicksplitSamplingMinCoveringSum
PicksplitSamplingMinOverlapArea
PicksplitSamplingMinAreaSum
SequentialScan

Fig. 4 The time it took to execute range based queries using
indexes built with different splitting strategies for several data
sample sizes. We tested smaller and larger search limits and

observed that the improvements are greater in case of a shorter
radius, such as the one presented here.

5.3. K nearest neighbor queries

As you can see on Figure 5, in the K nearest neighbor
search the M-tree based index significantly outperformed
the sequential scan.

When we first saw the results something that seemed
weird was the fact that some picksplit strategies have seem-
ingly managed to reduce their execution time when test-
ing on a bigger data set. Our initial explanation for this
was that when there are more entries, the space is more
densely populated, thus the neighbors are closer together,
so fewer branches have to be traversed in order to find the
same amount of them, but after running multiple measure-
ments it became more and more clear that the fluctuations
in the different data sizes are more likely due to noise, as
measuring such low values (around 10ms) turns out not to
be accurate enough. When averaging out the results of mul-
tiple measurements the plots started to flatten into a very
slowly rising line.

We also measured query execution times for exact
matches, because that was the only metric in which we
could possibly compare with other (non metric-only) index
structures, as without defining an ordering (avoiding which
is exactly the point of the M-tree) those would essentially
perform equal to a sequential scan. When looking for an
exact match, the M-tree was already outperformed by the
sequential scan and even more so by a B-tree, but that is not

surprising, as it was not designed for that use case. What we
would suggest as the probable cause for that are the over-
laps between the nodes with their covering radii, that forces
the search to traverse multiple paths, as in other index struc-
tures overlaps are more easily avoidable. With all that said,
it doesn’t mean that creating an index structure with our
process will reduce the performance of any queries, as the
PostgreSQL query planner chooses the sequential scan over
our index unless explicitly being instructed to use the index
instead.

 1

 10

 100

 1000

 0 5000 10000 15000 20000

Ex
ec

ut
io

n
tim

e
(m

s)

Sample size

PicksplitFirstTwo
PicksplitMaxDistanceFromFirst
PicksplitMaxDistancePair
PicksplitRandom
PicksplitSamplingMinCoveringMax
PicksplitSamplingMinCoveringSum
PicksplitSamplingMinOverlapArea
PicksplitSamplingMinAreaSum
SequentialScan

Fig. 5 The time it took to execute K nearest neighbor queries
using indexes built with different splitting strategies for several

data sample sizes.

5.4. Comparison of the M-tree, BK-tree and the VP-
tree indexes

M
-tr
ee

wi
th
Ra
nd
om

M
-tr
ee

wi
th
M
in

O
ve
rla
p
Ar
ea VP

-tr
ee

BK
-tr
ee

2200

2400

2600

2800

E
xe
cu
ti
on

T
im

e
(m

s)

Fig. 6 The execution time of 10 range queries with distance 8.
The used index structure: M-tree with PicksplitRandom , M-tree
with PicksplitSamplingMinOverlapArea, VP-tree and BK-tree.

We compare the M-tree implementation with two other
well-used index structures BK-tree and VP-tree. We did
not find any official implementations but we found one on

5https://github.com/fake-name/pg-spgist_hamming

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://github.com/fake-name/pg-spgist_hamming

24 Towards on experimental comparison of the M-tree index structure with BK-tree and VP-tree

a Github5 which work with SP-GiST in PostgreSQL. We
change the distance function in the code because it used the
Euclidean distance, but we need edit distance. We did not
change any other parts of the code. It is possible that it is
not an optimal code for the indexing. We used the previ-
ously presented ABC dataset, but we split the songs to sub-
sequence. The length of every sequence is at most 15. The
sequences are overlapping, like a sliding window. With this
modification, we got 1,9 million rows. For the measure-
ment, we used 10 different melodies from the database and
we use the range queries with distance 8 for the compar-
ison. Between the measures, we restart the database and
clear the system cache. We used two Picksplit implemen-
tations in this case based on the previous result. We se-
lected the PicksplitRandom and the PicksplitSamplingMi-
nOverlapArea, because these two strategies are the best and
worth for the queries. Figure 6. shows the execution time of
the range queries. We see that the M-tree implementation
can be faster with 600 ms then the VP-tree and BK-tree.
We can see no significant difference between the two Pick-
split strategies. This is a preliminary result and a future we
would like to analyze deeper. We wanted to compare the
indexes with K Nearest Neighbor queries, but now the SP-
GiST does not support the index for the ordering. Both VP-
tree and BK-tree used the sequence scan in this case, and it
is not fair to compare with that. We hope the later version
of the SP-GiST will support the ordering with index.

6. POSSIBLE USE CASES

In this section we present some possible real life scenar-
ios in which the system could prove to be useful by explain-
ing what difficulties occur and how this construction could
contribute a solution to them.

6.1. Music

6.1.1. Audio based music search

Websites and applications, such as SoundHound and
Shazam provide services that are capable of identifying
song from either a short recording of the actual audio or
at times even by just having the user sing or hum part of
the melody. As far as we know, these are currently based
on fingerprinting and other similar techniques. It often oc-
curs that somebody does not remember a whole sequence
correctly and thus may leave out notes or maybe even add
extra notes out of imagination. In these cases with an appro-
priate distance definition the efficient K Nearest Neighbor
queries made possible by this implementation could help
in the identification of the song by matching it against a
database that has an M-tree index.

6.1.2. Common origin research

Staying in the context of music, the other type of query
could be utilized for the discovery of connections between
for example folk music of different nations that are based

on the same melodies but are extended with different orna-
ments by searching withing a certain similarity range.

6.2. Genetics

In the field of genetics matching sequences to each other
is a very important procedure, as it allows the construc-
tion and examination of theories that can give way to many
conclusions to be drawn. By developing a distance met-
ric based on the probabilities of certain types of mutations
[16] 6 7 extracted from existing statistics and biological un-
derstanding of these processes an efficient lookup method
could be created with this by building indexes on top of
existing databases. A close example can be found in the
article introducing ND-GiST [15], which is also an index
structure created using GiST for the purpose of improving
query performance on genetic data.

6.3. Publishing

Any form of media, where originality is a requirement
is often faced with the challenge of checking for already
existing similar works. Exact copies are easy to filter, but
when an adversary alters the given information with the in-
tent of making it harder to detect more robust methods are
necessary. For example in the case of plagiarism detection,
where some materials authenticity, be it text, music, picture
or other work needs to be asserted, in relation to an exist-
ing database of entries, and an appropriate distance metric
can be designed to discover similarities, an M-tree based
construction is expected to perform quickly enough while
resulting in a more tunable experience.

6.4. Spell checking and autocompletion suggestions

When typing plain text or source code it can be very
convenient when by only typing a few letters a correct guess
is presented, thus we do not need to type the entire word,
just accept what was suggested. Several programs only of-
fer words that contain an exact match to what we typed.
Some other applications allow different parts of the desired
string to be entered as to avoid having to type long parts that
are the same between different suggestions, thus is unhelp-
ful in deciding between them. What would be even better,
but is rarely available in current software is the so called
fuzzy string search, which is essentially based on a penalty
system calculated using edit distance, thus is able to toler-
ate typing errors that add letters that are not present in the
desired string. When the collection of words to chose from
is sufficiently large enough (for example the words of an
entire language), such a process could potentially be sped
up by making use of a database with an M-tree index and K
nearest neighbor queries for suggesting the K closest alter-
natives.

7. CONCLUSION AND FUTURE WORKS

The achieved results are already capable of providing
significant performance improvements, but the field is far

6http://www2.csudh.edu/nsturm/CHEMXL153/DNAMutationRepair.htm
7https://ghr.nlm.nih.gov/primer/mutationsanddisorders/possiblemutations

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

http://www2.csudh.edu/nsturm/CHEMXL153/DNAMutationRepair.htm
https://ghr.nlm.nih.gov/primer/mutationsanddisorders/possiblemutations

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 25

from extensively discovered and there are still many ways
in which query times could potentially be further reduced,
for example:

Better tree splitting heuristics could be implemented
that further optimize the resulting structure and by that
improve the efficiency of the queries. In case of the
sampling type of strategies measurements could be con-
ducted to determine the tradeoff curve between smaller
and larger sample sizes, as testing more potential pairs
of promoted nodes certainly increases the index build-
ing times, but probabilistically should provide a struc-
ture that is more adherent to the rule of said strategy.
Variations on certain existing strategies could be cre-
ated by tuning their parameters, such as trying differ-
ent powers in PicksplitSamplingMinAreaSum, for ex-
ample cubing the radii would essentially make it into
PicksplitSamplingMinVolumeSum or even higher di-
mensions. Multiple different strategies could be merged
by each giving a score to every possible split and then the
choice could be determined by a weighted sum of these
scores. This way desirable properties could be combined
(for example if one strategy incentivizes a favorable prop-

erty while another penalizes something that is preferably
avoided, these could be achieved together), resulting for
example in a strategy that still aims to minimize overlap,
but avoids zero area nodes because of being persuaded to
create even splits by giving it a penalty based on, say, the
squared difference of the radii. In cases where the calcu-
lation of the chosen metric is resource intensive a caching
mechanics could be added to reduce the number of distance
computation.

ACKNOWLEDGEMENT

Project no. ED_18-1-2019-0030 (Application domain
specific highly reliable IT solutions subprogramme) has
been implemented with the support provided from the Na-
tional Research, Development and Innovation Fund of Hun-
gary, financed under the Thematic Excellence Programme
funding scheme. The project has been supported by the
European Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00002). Supported by the
ÚNKP-19-3 New National Excellence Program of the Min-
istry for Innovation and Technology.

REFERENCES

[1] R. BAEZA-YATES and G. NAVARRO. Fast approxi-
mate string matching in a dictionary. In Proceedings.
String Processing and Information Retrieval: A South
American Symposium (Cat. No. 98EX207), pages 14–
22. IEEE, 1998.

[2] T. BOZKAYA and M. OZSOYOGLU. Distance-based
indexing for high-dimensional metric spaces. SIG-
MOD Rec., 26(2):357–368, June 1997.

[3] W. A. BURKHARD and R. M. KELLER. Some
approaches to best-match file searching. Commun.
ACM, 16(4):230–236, April 1973.

[4] P. CIACCIA, M. PATELLA, F. RABITTI, and
P. ZEZULA. Indexing metric spaces with m-tree. In
SEBD, volume 97, pages 67–86, 1997.

[5] P. CIACCIA, M. PATELLA, and P. ZEZULA. M-tree
an efficient access method for similarity search in met-
ric spaces. In Proceedings of the 23rd VLDB Confer-
ence Athens, Greece, 1997. IBM Almaden Research
Center: Very Large Databases Endowment Inc., 1997.

[6] F. COSTA and F. BARBOSA. Timbre similarity
search with metric data structures. WEMIS 2009,
2009.

[7] I. DONKÓ, J. M. SZALAI-GINDL, G. GOMBOS,
and A. KISS. An implementation of the m-tree in-
dex structure for postgresql using gist. In 2019 IEEE
15th International Scientific Conference on Informat-
ics, page 6, Poprad, Slovakia, nov 2019. IEEE.

[8] M. Y. ELTABAKH, R. ELTARRAS, and WALID G.
AREF. Space-partitioning trees in postgresql: Real-
ization and performance. In 22nd International Con-
ference on Data Engineering (ICDE’06), pages 100–
100. IEEE, 2006.

[9] G. GOMBOS, I. DONKÓ, and J. M. SZALAI-
GINDL. Source code of the m-tree index, 2020.
Available at https://www.github.com/ggombos/
mtree.

[10] J. M. HELLERSTEIN, J. F. NAUGHTON, and A. PF-
EFFER. Generalized search trees for database sys-
tems. In Proceedings of the 21st International Con-
ference on Very Large Data Bases, pages 562–573,
1995.

[11] F. KARSDORP, P. van KRANENBURG, and
E. MANJAVACAS. Learning similarity metrics for
melody retrieval. In Proceedings of the 20th Interna-
tional Society for Music Information Retrieval Con-
ference, pages 478–485, 2019.

[12] M. KEYVANPOUR and N. IZADPANAH. Analytical
classification of multimedia index structures by using
a partitioning method-based framework. The Interna-
tional Journal of Multimedia & Its Applications, 3(1),
2011.

[13] F. NIELSEN, P. PIRO, and M. BARLAUD. Breg-
man vantage point trees for efficient nearest neighbor
queries. In 2009 IEEE International Conference on
Multimedia and Expo, pages 878–881. IEEE, 2009.

[14] M. SKALAK, J. HAN, and B. PARDO. Speeding
melody search with vantage point trees. In ISMIR,
pages 95–100, 2008.

[15] J. M. SZALAI-GINDL, A. KISS, G. HALÁSZ,
L. DOBOS, and I. CSABAI. Nd-gist: A novel method
for disk-resident k-mer indexing. In World Confer-
ence on Information Systems and Technologies, pages
663–672. Springer, 2019.

[16] C. TOMASETTI. On the probability of random ge-
netic mutations for various types of tumor growth.
Bulletin of mathematical biology, 74(6):1379–1395,
2012.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

https://www.github.com/ggombos/mtree
https://www.github.com/ggombos/mtree

26 Towards on experimental comparison of the M-tree index structure with BK-tree and VP-tree

[17] P. N. YIANILOS. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
Proceedings of the Fourth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA ’93, pages 311–
321, Philadelphia, PA, USA, 1993. Society for Indus-
trial and Applied Mathematics.

[18] P. N. YIANILOS. Excluded middle vantage point
forests for nearest neighbor search. In In DIMACS
Implementation Challenge, ALENEX’99, 1999.

Received March 10, 2020, accepted June 1, 2020

BIOGRAPHIES

Gergő Gombos was born in 1986. He graduated (MSc)
in 2012 at Eötvös Lóránd University (ELTE) as Computer
Science. He defended his PhD in 2018. The topic of his
thesis are the Semantic Web and the distributed computing
in Hadoop environment. Since 2018 he works as assistant
professor at Department of Information Systems of Eötvös
Lóránd University. His research interest are the computer
networks, hadoop and spark environment, big data archi-
tecture and analysis and nosql databases. He attended a lot
of internactional research projects in computer networks
field.

János Márk Szalai-Gindl was born in 1985. János Márk
Szalai-Gindl received his M.Sc. degree in Mathematics

from the Budapest University of Technology and Eco-
nomics. He is currently a Ph.D. candidate. He has written
his dissertation on data-intensive methods for managing
scientific data. His main research interests are in scientific
databases and in data sciences. He participates in multiple
research projects in those fields. He is an Assistant lecturer
in the Department of Information System, Faculty of Infor-
matics at the Eötvös Loránd University in Budapest. He
was the supervisor of 12 BSc/MSc students who graduated
as computer scientists.

István Donkó is a master’s degree student of the Infor-
matics at Eötvös Lóránd University (ELTE). He graduated
(BSc) at the same university in 2018.

Attila Kiss was born in 1960. In 1985 he graduated (MSc)
as a mathematician at ELTE Eötvös Loránd University, in
Budapest, Hungary. He defended his PhD in the field of
database theory in 1991; his thesis title was Dependencies
of Relational Databases. His scientific research is focusing
on database theory and practice, security, semantic web, big
data, data mining, artificial intelligence and bioinformatics.
He has more than 140 scientific publications. He was the
supervisor of 7 students who received PhD. He also super-
vised about 130 BSc/MSc theses. He was the project leader
of more than 25 industrial and research projects. Since 2010
he has been working as the head of Department of Informa-
tion Systems at ELTE Eötvös Loránd University.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

