
Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020, 27–34, DOI: 10.15546/aeei-2020-0010 27

BUILDING, VISUALIZING AND EXECUTING DEEP LEARNING MODELS AS
DATAFLOW GRAPHS

Gábor KRUPPAI∗, Péter LEHOTAY-KÉRY∗∗, Attila KISS∗∗∗
∗∗ ∗∗∗Department of Information Systems, Faculty of Informatics, ELTE Eötvös Loránd University,

E-mail: ∗kruppaigabor@gmail.com, ∗∗lkp@caesar.elte.hu, ∗∗∗kiss@inf.elte.hu

ABSTRACT
In recent years many frameworks have appeared, which enable users to easily build, visualize and execute deep learning networks

on graphical interfaces. However, they do not always provide enough opporunities to automate this process.
Generally, data processing programs can be organized into dataflow graphs that define the operations to be performed sequentially

on the data. The operation of deep learning neural networks can also be interpreted in a similar way, in which the input data to be
processed is a specific data set and the operations to be performed on the data are the layers of the net.

Due to architectural reasons, the entire deep learning neural network graph must be built before actual running, thus it is necessary
to change topological execution of dataflows to evaluation preceding graph building since knowing the layers separately is not enough
to operate the nets. As a solution for displaying editable program graphs, we created a framework in which data processing related to
Python packages can be described and the programs built from them can be visualized and executed (mostly) automatically.

Keywords: artificial neural networks, dataflow, deep learning, graphs, visualization

1. INTRODUCTION

The main goal of this research was to help create and
run models as quickly, transparently and easily as possible
when creating and testing models related to data processing.
Our approach was to create a framework that can (mostly)
automatically generate a graphical interface for arbitrary
Python packages which can be used to construct compu-
tational models related to the chosen package.

As an example implementation, we choose Keras [1],
which contains high-level APIs for deep learning neu-
ral networks, where the visual representation of structures
could contribute to the development process.

Keras is capable of running on top of TensorFlow,
CNTK, or Theano but there are many other frameworks
available (to use). First, we are going to present and dis-
cuss some of these.

Second, we are going to give some theoretical back-
ground for dataflow graphs and neural network structures.

Third, we are going to present our approach in the trans-
formation of callable entities into nodes and then go into
our implementation, discussing the main modules.

Fourth, we are going to present our solution in graph
editing and program execution, discussing our web inter-
face, the saving and submitting of models and the graph
execution.

Last, we are going to discuss our experiments about test-
ing our framework, building deep learning neural network
models with it.

2. RELATED WORKS

There are some works discussing various machine
learning tools, for example Hands-On Machine Learn-
ing with Scikit-Learn, Keras, and TensorFlow [2] intro-
duces Scit-Learn, Keras and TensorFlow as possible Python
frameworks and Deep learning with Python: develop deep
learning models on Theano and TensorFlow using Keras,
which discusses Keras on Theano and TensorFlow [3].

CNTK [4] (Computational Network Toolkit) is a power-
ful computation-graph based deep-learning toolkit for train-
ing and evaluating deep neural networks. It is used for ex-
ample to create the Cortana speech models and web rank-
ing.

Theano [5] is a framework in Python for defining, opti-
mizing and evaluating expressions involving high-level op-
erations on tensors. It is a general mathematical tool, but
was developed with the goal of facilitating research in deep
learning.

Scikit-Learn [6] is a Python module integrating a wide
range of machine learning algorithms for medium scale
problems. This package focuses on bringing machine learn-
ing to non-specialists using a general purpose high-level
language.

Visualization tools are already available for similar
tasks (such as TensorBoard [7]).

Authors of Visualizing Dataflow Graphs of Deep Learn-
ing Models in TensorFlow [8] presented a design study of
the TensorFlow Graph Visualizer, part of the TensorFlow
machine intelligence platform. They built a clustered graph
using the hierarchical structure annotated in the source code
to provide an overview. They described example usage sce-
narios and reported user feedback, to demonstrate the utility
of the visualizer.

In Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems [9], authors described the Ten-
sorFlow interface and an implementation of that interface
that they had built at Google.

However, these are mostly processing program codes
made for displaying purposes only, so the programs cannot
be modified with these tools.

There also exist program-graph editors, for example
Node- RED for IOT (i.e. Internet of Things) devices.

Authors of Toward a Distributed dataflow Platform for
the Web of Things (Distributed Node-RED) [10] explored
how to extend existing IoT dataflow platforms to create a
system suitable for execution on a range of run time envi-
ronments, toward supporting distributed IoT programs that

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

28 Building, Visualizing and Executing Deep Learning Models as Dataflow Graphs

can be partitioned among servers, gateways and devices.
They aimed to automate the distribution of dataflows us-
ing appropriate distribution mechanism, and optimization
heuristics based on participating resource capabilities and
constraints imposed by the developer.

Another example for program-graph editors is Rapid-
Miner [11] for data science projects in Java.

In Collaborative Analysis of Cancer Patient Data using
Rapid Miner [12], authors performed a collaborative anal-
ysis on cancer patient data sets on different attributes of the
values. The analysis of data i.e. parameter values had been
done through the process of mining by RapidMiner.

Authors of Data Mining model performance of sales
predictive algorithms based on RapidMiner workflows [13]
applied RapidMiner workflows to process a data set con-
taining information about the sales over three years of a
large chain of retail stores. They constructed a Deep Learn-
ing model performing a predictive algorithm suitable for
sales forecasting.

Although solutions have already been made, they do not
use Python, but programming languages and their graph
nodes have to be prepared one by one without any automa-
tization.

3. DATAFLOW GRAPHS IN PROGRAMMING

Definition 3.1. (see [14]) A dataflow graph is a bipartite
labeled graph where the two types of nodes are called ac-
tors and links.

G = (A∪L,E)

where the set of actors, links are

A = {a1,a2, ..,an},L = {l1, l2, .., lm}

and the set of edges is

E = (A×L)∪ (L×A)

Actors represent functions and links are treated as
placeholders of data values (tokens) as they flow from ac-
tors to actors. Edges are the channels of communication.

Stream-like structures [15] are most commonly used in
applications related to data processing. In such programs,
there are two main types of components: data transforma-
tions and data pipes. These components can be represented
in the graphs defined above, where transformation functions
can be interpreted as nodes and data pipes as edges.

Fig. 1 Schematic diagram of a dataflow graph with multiple
inputs and outputs allowing edge splitting and joining.

Directed edges have only one purpose, to transfer the
computed/processed data from one node to the proper input
of another. The functions that the node represents are only
able to process or transform the data if all the required pa-
rameters are completely provided so that all the input data
”arrive” from the preceding nodes in the ”pipes”. Finally,
the result(s) are forwarded to the output(s) of the node and
the execution will continue analogously.

It is indispensable to the program termination that the
graph does not contain directed cycles. In this case, there
exists a topological order and it can be computed. Evaluat-
ing the nodes in that order means that the current node can
get all its inputs immediately as all the nodes on which it
depends have already been executed.

4. NEURAL NETWORK STRUCTURES

Definition 4.1. (see [16]) A neural network consists of an
input layer of neurons, hidden layers of neurons, and a fi-
nal layer of output neurons. Each connection is associated
with a numeric number called weight.

hi = o(
N

∑
j=1

Vi jx j +T hid
i)

is the output of neuron i in the hidden layer, where o is
called activation function, N the number of input neurons,
Vi j the weights, x j inputs to the input neurons, and T hid

i the
threshold terms of the hidden neurons. The neurons in the
output layer are the last participants in the calculation, they
produce the output.

In its internal structure, a neural network can be con-
sidered to perform linear algebraic operations. The outer
structure of the net can be seen as a multi-parameter func-
tion which takes and returns multidimensional arrays with
predefined sizes.

The result calculated from the input data is determined
by the complex internal structure, which can store up to tens
of millions of internal parameters, depending on the appli-
cation. During the execution, matrices and matrix functions
stored in this internal structure are used to compute prede-
fined sequences of operations.

During the training phase, the proper iterative adjust-
ments of the internal variables ensure that the model can
get as close as possible to the solution of the given task,
which is defined by the training data set providing input-
output pairs. To sum up, the algorithm approximates the
function represented by the net by using fixed input and
output values. During the evaluation phase, the role of the
external data and internal parameters are interchanged, so
that the internal parameters determined during the training
phase are used to calculate the result.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 29

Fig. 2 Detailed example of neural networks inner structure. A
model consists of layers, and a layer consists of linear algebraic

operations and applied activation functions.

4.1. Neural Network Libraries

Deep learning software can be divided horizontally into
low- and high-level libraries. The low-level, hardware re-
lated, linear algebraic and analytics libraries are optimized
specially for basic operations and functions, whereas the
more complex structures are made by combining them.

High-level libraries implement APIs that handle more
complex neural layers rather than just variables. These two
levels are strongly connected as they are built on each other,
since neural layers implemented by higher-level APIs con-
sist of a pre-compiled composition of variables and func-
tions provided by low-level libraries, where the API hides
its internal components to form a higher abstraction level.

The most widespread low-level library is TensorFlow,
developed by Google [17]. Its high-level counterpart is
Keras, which is written in Python, in which predefined lay-
ers can be combined as building blocks to create complete,
trainable models.

4.2. Parallels with Dataflow Graphs

From both low and high-level approach, it can be seen
that the data stream model could easily be applied to them
if there were no need to modify the internal variables of the
model during the training phase with respect to the train-
ing data set. With the exception of the training phase, the
representation would be logically correct, even though the
low-level implementation works differently.

In addition, full models have to be built first in order to
train and run networks, and only then they can be evalu-
ated. Consequently, we are not able to use and see the sepa-
rated partial results of the neural model without building the
whole model. Ignoring the underlying implementation and
eliminating the initialization problem caused by the need
for building the whole model, we have a logically correct,

easy-to-read graph that could be edited easily to test and
build new models without coding.

5. TRANSFORMING CALLABLE ENTITIES INTO
NODES

Our goal is to reproduce existing libraries so that their
elements can be graphically displayed and combined. This
would lead to an interface where the functions and the
classes which exist in the current library can be used in a
visual interface.

In order to make it work with larger packages, it is nec-
essary to support the migration by the automatic transfor-
mation between Python modules and our entity description.

5.1. Python ”inspect” Module

The Python ”inspect” module provides a wide variety of
functions for retrieving information about modules, classes,
methods, functions and other objects at run time. The most
important aspect of the conversion mentioned above is to
determine the existing elements of the modules and their
attributes (e.g. type or signature). This could be achieved
by reading the source code of the objects and analyzing it.

As the main aim is to bind a graph node to a callable ob-
ject, we need to know their signature, which is the name of
the object and its parameters, position, type, default value
(if exists), and expected values. Using the ”inspect” mod-
ule, we can retrieve not only these properties but even code
comments and documentation if they are provided in the
correct format. If we scan the module thematically, we can
tell the path and the usage information for each object in
the given module.

5.2. Python ”importlib” Module

In Python, it is also possible to dynamically import any
module at run time. The easiest way to do this - beyond
the standard ”import” keyword - is to use the built-in ”im-
portlib” package and its ”import module” function.

If the location of a specific object is known in its mod-
ule (as a package string), it can be dynamically loaded into
the memory at run time. It exactly meets our expectations
when we would like to load a component only if it was used
in the program.

5.3. Information Extraction

The first step of transforming nested package objects
into graph nodes is to collect them into a list, with which the
above-mentioned ”inspect” module can help. It is necessary
to apply some filter criteria during the recursive package
traversal in order to skip undesirable objects and solve ref-
erence cycles. After the traversal, we will have a specific
set of objects and their location in the tree-like modules.

In order to the use the collected callable objects, the
signatures and other calling settings must be determined
for each object in the selected set. The signatures can be
queried by the above mentioned ”inspect.signature” func-
tion, which will provide argument information extracted
from the code text.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

30 Building, Visualizing and Executing Deep Learning Models as Dataflow Graphs

However, the information obtained by the above method
is still not sufficient to describe all the object calling styles.
In order to achieve proper object calls with ”type-correct”
(i.e. classes that the function expects) arguments, additional
call options and argument type information have to be gath-
ered.

If the default values are provided in the signature of
the function, the type of the argument can be deduced, al-
though, it may vary since Python are dynamically typed
and there is a possibility to accept various types/classes
(e.g. string and int). Unfortunately, accepted types can-
not be predicted from the plain code text without having
some kind of structured documentation, thus, it cannot be
automated and requires human revision.

Unfortunately, the call options, such as instantiation, ap-
plication or optional type checks, also require manual com-
pletions:

• if the node represents a callable object, we have to
provide if the class has to be instantiated or just
passed as is to the nodes following;

• if a function call has side effects on an object, we
have to consider deep-copy – if possible – the object
before the function call to prevent future anomalies;

• if an object is called multiple times in series by dif-
ferent nodes (application), we should indicate that in
the node description wherein it is represented;

• if the function has special argument types and we
want to ensure the type correctness, we should
change the automatic argument determination (as its
working for basic types only);

There could be cases where intermediate calls or extra
data/code transformations are necessary without the ability
of calling an existing function from any package (no such
function exists or a special operation is needed). To solve
this problem, we created a custom module, called ”fallback
module” where all the user-defined functionality extensions
can be placed. The advantage of the fallback module is
to create and import utilities and wrapper functions in the
framework without the need of installation.

After the automatic data extraction and the human re-
vision performed, the following node (Python object) de-
scriptor format will be available for each of the callable
objects (we used JSON formatting to store the properties)
to configure the graphical editor and inform the execution
server about the usage of the objects:

{

// Node name

"name": "Input",

// Object’s location (fallback)

"package": "kw.models.Input",

// Input type(s) of the node

"itype": "Dataset",

// Output type of the node

"otype": "Layer",

// Instantiate or not

"instance": true,

// Call "previous" node

// with this args.

"apply": false,

// Deep-copy on pass

"copy": false,

// Maximum number of

// merged input(s)

"conns": 1,

// Argument descriptors

"args": [{

// Name of the arg.

// in the code

"arg": "shape",

// Input type

"itype": "shape",

// Required argument

"required": true

// "otype", "default",

// "conns", etc.

}, {

"arg": "name",

"itype": "string",

"default": null

}, {

"arg": "dtype",

"itype": "nosupport",

"default": null

}, {

"arg": "sparse",

"itype": "bool",

"default": false

},

// further arguments

// ...

]

}

6. GRAPH EDITING AND PROGRAM EXECU-
TION

6.1. Web Interface

To properly visualize the components of the processed
package objects as nodes, the previously extracted node de-
scriptions are used. In our solution, we decided to imple-
ment a browser-based program-graph editor with the help

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 31

of an existing diagram editor library called ”Go.js” [18],
which was used with academic license in this work. The li-
brary’s main profile is to provide templatization and highly
customizable diagram rendering.

Fig. 3 The prepared functions can be dragged and dropped to
the editing area and can be applied after each other by drawing

edges (data pipes) between them. Every node can be displayed in
”overview” or ”detailed” mode (see Figure 4.)

Beside the calling instructions of the represented ob-
jects, the other important thing is to list the available argu-
ment fields. The arguments with basic typed default values
are recognized during the automatic information extraction
(5.3) and associated with the arguments, however, it is still
impossible to give a general solution which always deter-
mines all possible types. Even the predicted basic types
can differ as Python is dynamically typed so they may ac-
cept other types as well as the predicted ones, so human
revision is important cannot be omitted.

Fig. 4 Nodes can be generated from the configuration objects
prepared based on 5.3. As some of the input types cannot be
determined automatically, ”not supported”* will be shown as

they are not basic types but objects.
*Unfortunately, it can only be eliminated or resolved by

modifying the configurations by hand.

6.2. Saving and Submitting Models

In order to run a Python program from the graphical
model in the browser, it has to be serialized and sent to a
Python interpreter (on the server) where it can be parsed
and executed based on the extracted serialized model. The
visual models can also be exported into JSON format which

is identical to the serialized model used by the model sub-
mission to the execution server.

This JSON object contains all the necessary properties
for both the execution server and the ”Go.js” visualization,
like node definitions and links as well as the nodes’ actual
arguments and execution state. Since this is the complete
inner state of the client-side visualization, not only can it
be exported, but easily imported as well.

6.3. Graph Execution

Fig. 5 Structure of the execution server. (1) Model serialization,
sending to the server; (2) Execution, session creation; (3) Spawn
new threads for model execution; (4) Parse the received program
and create topological evaluation order; (5) Evaluate the graph
nodes in a dedicated process; (6) Capture standard outputs; (7)

Notify the session about the progress; (8) Send back progress and
output data.

To execute the client-edited program, we also imple-
mented an execution server (in Python) where the serialized
program model (i.e. graph) can be sent to server, parsed and
executed. As the server receives the executable model from
the client, it parses the serialized data and rebuilds the same
graph as it was created at client-side. It also checks if the
received graph is cycle-free and then sorts the nodes into
topological order to prepare them for sequential processing.

Checking if the received graph is cycle-free:
def getOrder(G):

order = []

for key, node in G.nodes.items():

if node.getAttr(’visited’)

is None:

NNGraph.DFSorder(

G, node, order)

order.reverse()

return order

Sorting the nodes into topological order:

def DFSorder(G, root, order = []):

root.setAttr(’visited’, False)

for link in root.links_to:

node = G.nodes[link.to_node]

state =

node.getAttr(’visited’)

if state == False:

raise Error(’Graph

is not a DAG!’)

elif state is None:

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

32 Building, Visualizing and Executing Deep Learning Models as Dataflow Graphs

NNGraph.DFSorder(

G, node, order)

order.append(root.id)

root.setAttr(’visited’, True)

The evaluation starts from the first node of the topolog-
ical order and moves on one by one, taking the previously
computed values from preceding nodes – if they are neces-
sary for the current node. During the evaluation of the cur-
rent node, the server-side framework reads the represented
object package path from the model graph and tries to im-
port it from the installed packages first.

If the requested module or function does not exist glob-
ally, a user defined fallback module will be tried, which can
be useful not only for error handling but for package exten-
sion. If the fallback module and its function is also missing,
an error will be thrown and the whole execution will stop.

Another crucial point is the side effect and ”noncopy-
able” object handling. If a node’s output value is bounded
to multiple subsequent nodes but calling a function on it
causes modification in its value, only the first node will get
the original value and thee others may fail because of the
”unintended” value change through references.

To solve this problem, it should be ensured that the
node’s original return value does not change by deep-
copying – if possible – it on demand. To avoid most of
the unexpected behaviors, the framework tries to make a
deep-copy from all objects if possible; otherwise it leaves
them as they are.

Each evaluation step (evaluation of a single node) starts
and ends with meta signals which are captured and for-
warded to the client to inform the user about the progress
and the time consumed. Beside meta signals, standard con-
tents of outputs are also captured and sent back to the client.

Evaluation:

def run(clsFallback=’module’,

progress=None):

for key in order:

if progress is not None:

progress(G.nodes[key],

’progress’, 0)

time_start = time.clock()

evaluate(G.nodes[key],

clsFallback)

time_end = time.clock()

if progress is not None:

progress(G.nodes[key],

’finished’,

time_end-time_start)

def evaluate(node,

clsFallback=’module’):

cls = EngineBase.importClass(

*node.package, clsFallback)

ret = None

(inputargs, required, kwargs)=

prepareArguments(node)

if node.instance and node.apply:

ret = cls(*required,

**kwargs)(*inputargs)

elif node.instance and

not node.apply:

ret = cls(*inputargs,

*required, **kwargs)

elif not node.instance and

node.apply:

ret = cls(*inputargs)

elif not node.instance and

not node.apply:

ret = cls

node.setAttr(’return’, ret)

EngineBase.flush()

7. EXPERIMENTS

To properly test the framework, we built several neu-
ral network models with it. In order to manage the required
data for the nets, we used exported ”numpy” objects (”.npz”
files) to store and load data sets for both training and val-
idation, so additional ”npz” data loader nodes were imple-
mented to work with them. To show the working mecha-
nism and capabilities, a simple sequential (Figure 6) and
a functional (Figure 7, with layer splitting and merging)
model were created.

The nodes with different logical functionality are
marked with different colors. In the screenshots below, blue
indicates data managing (e.g. loaders, transformations),
yellow and purple means model input and output, green
nodes belong to the neural model (e.g. layers, optimizers,
functions, configurations) and red indicates the compute-
intensive calls (such as training and evaluation).

In total, we made 91 nodes available from Keras pack-
age in our framework, 76 of which were auto-generated, 10
required a wrapper class and 5 needed to redefined includ-
ing the 3 data nodes. In addition, another library – Fool-
box [19] was also transferred and tested with our program
in order to generate adversarial attack inputs with a wide
variety of methods.

Foolbox required a little more (10) functions to be
wrapped in totally self-defined objects, and 32 functions
needed almost identical one-lined wrapper functions, which
could be eliminated in the future by recognizing even more
calling information. These manual extensions were enough
to cover more than 45% of Keras and around 95% of Fool-
box functions and classes.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

Acta Electrotechnica et Informatica, Vol. 20, No. 2, 2020 33

Fig. 6 Simple MNIST convolutional neural network sequential
model from https://keras.io/examples/mnist cnn

Fig. 7 Deep Denoising Super Resolution (DDSRCNN) from the
collection at

https://github.com/titu1994/Image-Super-Resolution, referring
to [20]

7.1. Extending functionalities

Adding new packages and functions are also possible
by generating (see 5.3) additional node (object) descriptors
and appending them to the configuration file which con-
tains these data. In our examples, we only ported specific
parts from popular neural network related libraries. What is
more, other fields can also benefit from the base framework.

Our original goal was to build programs by visual tools
with as little preparation overhead as possible. This tech-
nique could also be useful in data processing and transfor-
mation if the model is extended with the required functions.

8. CONCLUSION

The dataflow structure has shortcomings over general
programming, namely with circular object dependencies
and side effect handling. In statically typed languages, the
function-node transformation would be feasible in contrast
to dynamically typed languages, where some of the nodes
can be generated automatically but there is no fully general
solution to handle every function signature.

However, creating editable graph view for Python pack-
ages with a relatively small amount of work is quite useful.
In addition, this tool can be helpful for professionals in data
processing and testing tasks like multimedia (image, audio,
video) manipulation pipelines (e.g. with ”ffmpeg”), data
mining applications and cycle-free network modelling. Fi-
nally, it can be used in education too, for example to teach
basic programming skills for children as no language and
coding knowledge is required.

9. FUTURE WORK

Possible improvements could be made if the execution
system was changed from single node evaluations to actual
program generation and running. That would bring a com-
pletely different backend structure and possibly increase the
graph complexity on editing, which is against the endeavor
of simplification but worth testing in the future works.

ACKNOWLEDGEMENT

The project has been supported by the European Union,
co-financed by the European Social Fund (EFOP-3.6.3-
VEKOP-16-2017-00002).

REFERENCES

[1] F. CHOLLET et al. Keras documentation. keras. io,
2015.

[2] A. GÉRON. Hands-On Machine Learning with Scikit-
Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems. O’Reilly Me-
dia, 2019.

[3] J. BROWNLEE. Deep learning with Python: develop
deep learning models on Theano and TensorFlow us-
ing Keras. Machine Learning Mastery, 2016.

[4] F. SEIDE and A. AGARWAL. Cntk: Microsoft’s
open-source deep-learning toolkit. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2135–
2135, 2016.

[5] J. BERGSTRA, F. BASTIEN, O. BREULEUX,
P. LAMBLIN, R. PASCANU, O. DELALLEAU,
G. DESJARDINS, D. WARDE-FARLEY, I. GOOD-
FELLOW, A. BERGERON, et al. Theano: Deep
learning on gpus with python. In NIPS 2011,
BigLearning Workshop, Granada, Spain, volume 3,
pages 1–48. Citeseer, 2011.

[6] F. PEDREGOSA, G. VAROQUAUX, A. GRAM-
FORT, V. MICHEL, B. THIRION, O. GRISEL,
M. BLONDEL, R. PRETTENHOFER, P.and WEISS,
V. DUBOURG, et al. Scikit-learn: Machine learn-
ing in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[7] TensorFlow. (2019). TensorBoard, tensor-
flow.org/tensorboard.

[8] K. WONGSUPHASAWAT, D. SMILKOV,
J. WEXLER, J. WILSON, D. MANE, D. FRITZ,
D. KRISHNAN, F. B. VIÉGAS, and M. WAT-
TENBERG. Visualizing dataflow graphs of deep
learning models in tensorflow. IEEE transactions
on visualization and computer graphics, 24(1):1–12,
2017.

[9] M. ABADI, A. AGARWAL, P. BARHAM,
E. BREVDO, Z. CHEN, C. CITRO, G. S. COR-
RADO, A. DAVIS, J. DEAN, M. DEVIN, et al.
Tensorflow: Large-scale machine learning on het-
erogeneous distributed systems. arXiv preprint
arXiv:1603.04467, 2016.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

34 Building, Visualizing and Executing Deep Learning Models as Dataflow Graphs

[10] M. BLACKSTOCK and R. LEA. Toward a distributed
data flow platform for the web of things (distributed
node-red). In Proceedings of the 5th International
Workshop on Web of Things, pages 34–39, 2014.

[11] RapidMiner. (2019). Lightning Fast Data Science
Platform for Teams, rapidminer.com.

[12] P. JAIN and S. Kr. VISHWAKARMA. Collabo-
rative analysis of cancer patient data using rapid
miner. International Journal of Computer Applica-
tions, 145(2), 2016.

[13] A. MASSARO, V. MARITATI, and A. GALIANO.
Data mining model performance of sales predictive
algorithms based on rapidminer workflows. Inter-
national Journal of Computer Science & Information
Technology (IJCSIT), 10(3):39–56, 2018.

[14] K. M. KAVI, B. P. BUCKLES, and U. N. BHAT. A
formal definition of data flow graph models. IEEE
Transactions on computers, (11):940–948, 1986.

[15] J. KODOSKY, J. MAC CRISKEN, and G. RYMAR.
Visual programming using structured data flow. In
Proceedings 1991 IEEE Workshop on Visual Lan-
guages, pages 34–39. IEEE, 1991.

[16] S.-CH. WANG. Artificial neural network. In Inter-
disciplinary computing in java programming, pages
81–100. Springer, 2003.

[17] TensorFlow. (2019). TensorFlow, tensorflow.org.

[18] F. SHAHZAD, T. R. SHELTAMI, E. M. SHAK-
SHUKI, and O. SHAIKH. A review of latest web tools
and libraries for state-of-the-art visualization. Proce-
dia Computer Science, 98:100–106, 2016.

[19] J. RAUBER, W. BRENDEL, and M. BETHGE. Fool-
box: A python toolbox to benchmark the robust-
ness of machine learning models. arXiv preprint
arXiv:1707.04131, 2017.

[20] X.-J. MAO, CH. SHEN, and Y.-B. YANG. Im-
age restoration using convolutional auto-encoders
with symmetric skip connections. arXiv preprint
arXiv:1606.08921, 2016.

Received March 2, 2020, accepted June 1, 2020

BIOGRAPHIES

Gábor Kruppai received his BSc degree in computer sci-
ence at the Etvs Lornd University Faculty of Informatics
in Hungary in 2019 and currently doing his masters degree
with the specialization of mathematics. During his stud-
ies he attended several projects related to machine learn-
ing and taught various programming languages to univer-
sity students.

Péter Lehotay-Kéry received his MSc degree in computer
science at the Etvs Lornd University Faculty of Informat-
ics in Budapest, 2018 and currently doing his PhD studies
with specialization in information systems. His scientific
research is focusing on databases, security, big data, data
mining and bioinformatics.

Attila Kiss defended his PhD in the field of database theory
in 1991. His research is focusing on database theory, data
mining, artificial intelligence. Since 2010 he has been the
head of Department of Information Systems at Etvs Lornd
University.

ISSN 1335-8243 (print) c© 2020 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

