
Acta Electrotechnica et Informatica No. 4, Vol. 5, 2005 1

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

ATTRIBUTES SELECTION FOR LICENCE PLATE RECOGNITION BASED ON
DECISION TREES

Aleš JANOTA, Jiří ZAHRADNÍK, Juraj SPALEK
Department of Control and Information Systems, Faculty of Electrical Engineering, University of Žilina,

Univerzitná 8215/1, 010 26 Žilina, Slovak Republic, tel. 041/513 3300,
E-mail: {ales.janota | jiri.zahradnik | juraj.spalek}@fel.utc.sk

SUMMARY
The paper deals with an image-based recognition system, which captures, interprets, records, and processes the image of

a license plate for use in a variety of ITS applications. Such a system can save money by collecting and processing vehicle
data without human intervention. Motorists are then allowed to pass toll plazas or weigh stations without stopping, which
can save their time and prevent occurrence of congestions. Helping control access to secured areas or assisting in law
enforcement can also improve safety and security. In different references this technology is also referred as Automatic
Vehicle Identification, Car Plate Recognition, Automatic Number Plate Recognition, Car Plate Reader or Optical Character
Recognition for Cars.

The paper discusses a concept of the Licence-Plate Recognition system consisting of several modules that are in different
stages of development. It focuses on processing of images with only one vehicle captured. The system is based on decision
trees created using inductive tree algorithms. After brief outline of the system the main attention is paid to selection and
detailed description of attributes used to build a decision tree. The paper includes an algorithm used to find holes and arcs in
the characters. Totally 32 principal attribute types are explained. Some of them are used several time in an analogical way,
thus the final decision tree of the discussed system prototype contains 77 nodes. The system has been prototyped using C++
and designed for recognition of Slovak-style license plates. Some of introductory procedures (image input and selection of
area with licence plate in the image) are still performed manually and in future can be fully automated.

Keywords: image processing, plate recognition, decision tree, attribute, intelligent transportation system

1. INDRODUCTION

Most of applications used in Intelligent
Transportation Systems need to identify vehicles
first. License-Plate Recognition (LPR) is an image-
processing technology used to identify vehicles by
their license plates. In different references this
technology is also referred as Automatic Vehicle
Identification, Car Plate Recognition, Automatic
Number Plate Recognition, Car Plate Reader or
Optical Character Recognition for Cars. Vehicle’s
LPR system has been a special area of interest in
video surveillance domain for more than a decade or
so. It is gaining popularity in various security and
traffic applications, e.g. in controlling access to a toll
collection point or a parking lot or integrated to the
video vehicle detection systems which usually are
installed in places of interest for intersection control,
traffic monitoring etc., to identify vehicles that
violate traffic laws or to find stolen vehicles [1].
There are a number of techniques used so far for
recognition of number plates such as BAM (Bi-
directional Associative Memories) neural network
character recognition [2][3], pattern matching [4]
etc. Most LPR systems focus on the processing of
images with only one vehicle [5][6][7][8], others are
able to process more vehicles at once [9]. The paper
discusses a concept of the LPR system consisting of
several modules that are in different stages of
development. It focuses on processing of images
with only one vehicle having Slovak-style license
plate. The system is based on decision trees created
using inductive tree algorithms [13].

2. CONCEPT OF THE LPR SYSTEM

Image Input
A1

Area Selection
A2

Image
Pre-processing

A3

Image Segmentation
A4

Segmented Image
Input

B5

Calculation of
Numerical Characteristics
B6

Decision Tree
Evaluation

B7

Database
Design for Testing and

Learning Modules

B8

Learning
C9

Testing
C10

Manual
 Browsing and Editing
C11

Newly
Created Tree

C12

Loading
the Selected

Decision Tree from HDD

C13

Scanner,
digital camera,

HDD

Sequence of
recognised
characters

C

A

B

A
Block for data input, pre-
processing and
segmentation

B Block for individual
character recognition

C Block for decision tree
elaboration

Legend:

Fig. 1 Block scheme of the LPR system

2 Attributes Selection for Licence Plate Recognition Based on Decision Trees

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

To explain a concept of the proposed LPR
system we can use the block scheme given in Fig. 1.
The system consists of the blocks A, B and C
containing several sub-blocks each.

In the sub-block A1 an image may be taken from
a digital camera or a scanner connected via TWAIN
interface [10] or loaded from the HDD as a 24-bit
colour BMP file. The quality of the image underpins
the entire system's accuracy and precision. To copy
the image block-by-block the function memcpy from
the library <string.h> is used [11]. Obviously, a
machine can only identify a license plate's
alphanumeric content after it has properly
recognized that a plate is present in the field of view.
Therefore, the main task of the sub-block A2 is to
find an area containing single-line text containing a
number of the license plate somewhere in the image.

The area selected in the previous step is pre-
processed in the sub-block A3 using a fixed
threshold and consequently copied into a new
smaller image.

The sub-block A4 is used to find individual
characters in a newly defined image. The algorithm

starts in the centre of the vertical projection
histogram and traverses up and down; in both
directions significant change (decrease) of black
colour is to be identified (Fig. 2). If difference
between two adjacent points of vertical projected
histogram is greater than 20 % of the width of the
searched area, this point is chosen as a starting point
(if going up) or ending point (if going down).
Intensity of searched decrease is an experimentally
found value. The algorithm works reliably with the
text line not being inclined and characters being on
the same level all.

Consequently the horizontal projection histogram
of the found area can be calculated. The algorithm
continues traversing from the left to the right side
searching for the first non-zero value of the
horizontal projection diagram. This value is to be
marked as a starting point of the character. Other
non-zero values are considered to be a part of the
character. Reaching another zero value the area
between two zero values is added to the list of
segments. The algorithm adds another segment until
the border of the area is reached.

Z A 2 0 0 4

y

x y
Original image processed
using a threshold

Vertical projection diagram

Stop at the significant
decrease

Where algorithm starts

Stop at the significant
decrease

Number of (black) points

Fig. 2 Searching for upper and lower text boundary

Thereafter those areas that contain too few image
points necessary for inclusion of a character will be
removed from the list of segments. The main
disadvantage of the algorithm is its inability to
separate coupled characters. A similar segmentation
algorithm is presented in [12].

 Z A 2 0 0 4

Fig. 3 Example of found segments

After segmentation (in the sub-block B5) the

following data is delivered to the system:
- A pointer to the original image;
- A pointer to the list of found symbols (segments).

The sub-block delivers all found segments one
after another. The structure of found segments is as
follows:

struct area{
 int x1; //left upper corner
 int y1; //

 int x2; //right lower corner
 int y2; //
};

//structure of the list of found
segments
struct area_1{
 area *rn_i; //one segment
 area_1 *next; //pointer to the next
segment
};

For each identified segment, containing just one

symbol, different numerical characteristics
(attributes) may be calculated. An item of the
attribute vector consists of the name, value and
initiation. The structure of the attribute vector is as
follows:

Typedef struct variable
{ chat name[255]; //name
 int value; //value
 int ini; //initiation
 variable *n_var; //pointer to the
next item };

Acta Electrotechnica et Informatica No. 4, Vol. 5, 2005 3

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

The sub-block B6 is designed to meet the
following requirements:
1. Provide simple interface for work with an

attribute vector:
• Setting up a new attribute vector;
• Adding a new attribute into the attribute

vector;
• Removing an attribute from the attribute

vector;
• Finding an attribute contained in the

attribute vector;
• Deleting the whole attribute vector;
• Writing items of the attribute vector on

HDD;
2. Provide functions for calculation of attributes.

Maximum number of attributes contained in the
attribute vector is unlimited.

Then a decision tree can be evaluated. Correct
operation of the sub-block B7 depends on fulfilling
two conditions:

• Decision tree must be loaded from HDD;
• A calculated attribute vector must be

available.
The sub-block provides the following functions:
• It makes reading of the decision tree from

HDD possible;
• It makes classification of the image of input

symbol possible based on the use of
decision tree and attribute vector.

Functions relevant to this module are
implemented in the file read_tree.cpp. Function
used to load decision tree to memory is:

int link_fulltree(char *dir,char
*prj_file,NODE **root);

where:
dir – path to directory containing decision tree;
prj_file – path to the file of decision tree project;
root – function will return root node of loaded tree.

Function used to unload decision tree from
memory s:

void rm_fulltree(NODE *root);

where:
root – pointer to the root of unloaded tree.

Function used to traverse decision tree is:

int a_tree(NODE *root,var
*var_list,NODE **decision)

where:
decision – function will return pointer to the leaf
node;
root – pointer to root node of the tree;
var_list – pointer to the attribute vector.

The last sub-block B8 of the “B” module enables
design of a database for testing and learning.

The “C” module is designed to perform
elaboration of a decision tree, i.e. to make
procedures of learning, testing, manual browsing
and editing of the newly created decision tree
possible.

3. ATTRIBUTES USED TO CREATE A

DECISION TREE

To find holes and arcs in the characters we use
the following algorithm that consists of the
following steps:
1. Memory allocation for four fields having

dimensions 6×11.
2. Transiting a segment in order to get coordinates

“to the left” and “to the top”.
• Take the first point with coordinates B(x =

1, y = 1).
• If B(x, y) = 0 then L(x, y) = 0, U(x, y) = 0.
• If B(x, y) = 1 then

o If x = 1 then L(x, y) = 1 else L(x, y) =
L(x-1, y) + 1.

o If y = 1 then U(x, y) = 1 else U(x, y) =
U(x, y-1) + 1.

• Transit all elements in the field B(x, y) .
3. Transiting the segment in order to get

coordinates “to the right” and “to the bottom”.
• Take the first point with coordinates B(x =

6, y = 1).
• If B(x, y) = 0 then R(x, y) = 0, D(x, y) = 0.
• If B(x, y) = 1 then

o If x = 6 then R(x, y) = 1 else R(x, y) =
R(x+1, y) + 1.

o If y = 11 then D(x, y) = 1 else D(x, y) =
D(x, y+1) + 1.

• Transit all elements in the field B(x, y);

where:
B(x, y) - binary image function of the segment
 x = 1, 2, …,6; y = 1, 2, ..., 11;
B(x, y) = 0 - the point with coordinates x, y has a
 colour of the character (black);
B(x, y) = 1 - the point with coordinates x, y has a
 colour of the background (white);
L(x, y) - field for left direction;
R(x, y) - field for right direction;
U(x, y) - field for up direction;
D(x, y) - field for down direction.

x

y

1 2 3 4 5 6
1
2
3
4
5
6
7
8
9

10
11

Fig. 4 Example of a segmented image

4 Attributes Selection for Licence Plate Recognition Based on Decision Trees

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

The use of this algorithm can be presented in
application to the image of 6x11 points containing
image of the number 8 (see Fig. 4).

 [LEFT] [RIGHT] [UP] [DOWN]
1,2,3,4,5,6, 6,5,4,3,2,1, 1,1,1,1,1,1, 2,1,1,1,1,2,
1,0,0,0,0,1, 1,0,0,0,0,1, 2,0,0,0,0,2, 1,0,0,0,0,1,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,1,1,0,0, 0,0,3,3,0,0,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,2,2,0,0, 0,0,2,2,0,0,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,3,3,0,0, 0,0,1,1,0,0,
1,0,0,0,0,1, 1,0,0,0,0,1, 1,0,0,0,0,1, 1,0,0,0,0,1,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,1,1,0,0, 0,0,4,4,0,0,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,2,2,0,0, 0,0,3,3,0,0,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,3,3,0,0, 0,0,2,2,0,0,
0,0,1,2,0,0, 0,0,2,1,0,0, 0,0,4,4,0,0, 0,0,1,1,0,0,
1,0,0,0,0,1, 1,0,0,0,0,1, 1,0,0,0,0,1, 1,0,0,0,0,1,

Fig. 5 Fields of distances

The algorithm will result in 4 fields (see Fig. 5)

having a size of the original image, each field for
one direction of transition. Item values in each field
represent distances to the end of segment or distance
to the edge for direction corresponding to a given
point. Points belonging to the character image (i.e.
black points) have item values equal to 0.

After algorithm application the fields L(x, y),
R(x, y), U(x, y), D(x, y) are available in the memory.
They are consequently used to calculate attributes:
1. Ratio: number of points bounded from all the

sides – to – total number of segment points;
2. Ratio: number of points unbounded from the

left – to – total number of segment points;

3. Ratio: number of points unbounded from the
right – to – total number of segment points;

4. Ratio: number of points unbounded from the
top – to – total number of segment points;

5. Ratio: number of points unbounded from the
bottom – to – total number of segment points.

Given attributes are added to the attribute vector.

They are applied separately for upper and lower half
of the segment. In addition other attributes are
added:
6. Ratio: number of points bounded from all sides

in the upper (lower) half of the segment – to –
total number of segment points;

7. Ratio: number of points unbounded from the
left in the upper (lower) half of the segment –
to – total number of segment points;

8. Ratio: number of points unbounded from the
right in the upper (lower) half of the segment –
to – total number of segment points;

9. Ratio: number of points bounded from the
bottom in the upper (lower) half of the segment
– to – total number of segment points;

10. Ratio: number of points unbounded from the
top in the upper (lower) half of the segment –
to – total number of segment points.

Another possible calculation is based on different

shapes of character edges. Particular values of
attributes are calculated separately for each edge
vector of distances (distances of points being closest
to the segment edge).

0, 0, 8, 9, 9, 8, 0, 0

2, 1, 8, 9, 9, 8, 0, 0

0
0
0
0
0
0
1
2

0
0
0
0
0
0
1
2

Upper edge

Right
edge

Lower edge

Left
edge

Vector of values representing
distance between the closest
point of the character and the
left edge of the segment

Vector of values representing
distance between the closest
point of the character and the
upper edge of the segment

Vector of values representing
distance between the closest
point of the character and the
lower edge of the segment

Vector of values representing
distance between the closest
point of the character and the
right edge of the segment

Fig. 6 Vectors of “closest point-symbol edge” distances

Acta Electrotechnica et Informatica No. 4, Vol. 5, 2005 5

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

To capture edges of the character several
attributes have been chosen, using the following
symbols:
h - height of the character in points
w - width of the character in points
L(i) - vector of the left side, where i = 1, 2, …, h
R(j) - vector of the right side, where j = 1, 2, …, h
U(k) - vector of the upper side, where k = 1, 2, .., w
D(l) - vector of the lower side, where l = 1, 2, .., w

a) Edges directing to the left and to the right

For the left side we can write:
If L(i) – L(i-1) < 0 then the edge in the point

i leads to the left (e.g. Fig. 7a);
If L(i) – L(i-1) > 0 then the edge in the point

i leads to the right (e.g. Fig. 7b);
If L(i) – L(i-1) = 0 then the edge in the point

i doesn’t change its direction (e.g. Fig. 7c).

Transiting all the points of the relevant vector the

following attributes are added to the attribute vector:
11. Ratio: number of points directing for the left –

to – length of the edge;
12. Ratio: number of points directing for the right –

to – length of the edge;
13. Ratio: number of points that do not change

their direction – to – length of the edge.
The same approach can be applied for the right side.

a) b) c) d)

Fig. 7 Possible direction of edges

b) Edges directing up and down

For the lower side we can write:
If D(l) – D(l-1) < 0 then the edge in the point

i leads down (e.g. Fig. 7a);
If D(l) – D(l-1) > 0 then the edge in the point

i leads up (e.g. Fig. 7b);
If D(l) – D(l-1) = 0 then the edge in the point

i doesn’t change its direction (e.g. Fig. 7d).

Transiting all the points of the relevant vector the
following attributes are added to the attribute vector:
14. Ratio: number of points directing up – to –

length of the edge;
15. Ratio: number of points directing down – to –

length of the edge;
16. Ratio: number of points that do not change

their direction – to – length of the edge.
The same approach is applied for the upper side.
These attributes cannot be used to describe

exactly shapes of edges but can enable making
decision whether edge directing is monotonous or
not (e.g. characters A, U, V for the left and right

side). In the case of a monotonous nature the
attributes may be used to quantify how sudden fall
of the edge is and thus distinguish between
characters, e.g. U and V. However, these attributes
can be applied after assumption of shape and
monotony expressed in the decision tree.

c) Notation of a shape of the edge using vector
of values representing downward-sloping
and upward-sloping (analogically for
direction of the edge to the left and to the right)

Shape of the edge is expressed for every edge

(left, upper, right, lower) separately using eight
attributes. For lower side:
17. Upward-sloping 1 (ds_u1)
18. Downward-sloping 1 (ds_d1)
19. Upward-sloping 2 (ds_u2)
20. Downward-sloping 2 (ds_d2)
21. Upward-sloping 3 (ds_u3)
22. Downward-sloping 3 (ds_d3)
23. Upward-sloping 4 (ds_u4)
24. Downward-sloping 4 (ds_d4)

Attributes represent ratio of downward
(upward) sloping intensity or points with no change
of direction to length of the edge. If the edge
contains more than four changes of direction the
sum of percentage of downward sloping and upward
sloping less than 100.

U
ds_d1 ds_u2

ds_u1 = 0
ds_d1 = 58
ds_u2 = 42
ds_d2 = 0
ds_u3 = 0
ds_d3 = 0
ds_u4 = 0
ds_d4 = 0

Fig. 8 Expressing shape of the edge

From Fig. 8 it is apparent that the lower edge
begins downward sloping that covers 58 % of its
length, then the edge begins upward sloping
covering 42 %.

d) Maximums of histograms of projection

profiles

Maximums and minimums of histograms are

calculated for horizontal and vertical projection
profiles and separately also for each third of the
profile (Fig. 9). They can be used to identify long
vertical and horizontal lines. The main limitation of
this attribute consists in the fact that any picture
slewing or sloping change perpendicular character of
lines.

Calculated maximus and minimus are used to
create another items of an attribute vector:

6 Attributes Selection for Licence Plate Recognition Based on Decision Trees

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

H 1st third of character

2nd third of character

3rd third of character

3rd third of character
2nd third of character
1st third of character

Maximum of the 2nd third, maximum of the profile
Maximum of the 3rd third

Maximum of the 1st third

Maximum of the 2nd third
Maximum of the 3rd third, maximum of the profile Maximum of

the 1st third

Fig. 9 Maximums of histograms of projection profiles

25. Ratio: maximum of horizontal projection
histogram – to – width of the character;

26. Ratio: maximum of horizontal projection
histogram in the 1st third of the character – to –
width of the character;

27. Ratio: maximum of horizontal projection
histogram in the 2nd third of the character – to –
width of the character;

28. Ratio: maximum of horizontal projection
histogram in the 3rd third of the character – to –
width of the character;

29. Ratio: maximum of vertical projection
histogram – to – height of the character;

30. Ratio: maximum of vertical projection
histogram in the 1st third of the character – to –
height of the character;

31. Ratio: maximum of vertical projection
histogram in the 2nd third of the character – to –
height of the character;

32. Ratio: maximum of vertical projection
histogram in the 3rd third of the character – to –
height of the character.

4. CONCLUSION

Authors presented the concept of a plate
recognition system and described the actual state of
its development. Special attention was paid to
selection and description of attributes used to create
a proper decision tree. The first version of the
decision tree was constructed using Quinlan’s ID3
algorithm followed by some other manual
modifications (pruning). Actual version of the tree
consists of 77 nodes.

This work has partially been supported by the
Grant Agency of the Slovak Republic VEGA, grant
No. 1/1044/04 “Theoretical Foundations for
Implementing e-Safety Principles into Intelligent
Transportation Systems” and partially by the
institutional research project No. 07/604/2005
“Transport telematics and tools to improve its
quality” solved at the Faculty of Electrical
Engineering, University of Žilina.

REFERENCES

[1] Xin Li, XiaoCao Yao, Yi L. Murphey, Robert

Karlsen, Grant Gerhart: A Real-Time Vehicle
Detection and Tracking System in Outdoor
Traffic Scenes, Proc. of Pattern Recognition,
17th International Conference on ICPR’04,
Volume 2, August 2004, pp. 761-764.

[2] Maged M. M. Fahmy: Automatic number-plate
recognition: neural network approach, Proc. of
Vehicle Navigation and Information Systems
Conference, September 1994, pp. 99-101.

[3] S. Draghici: A Neural Network Based Artificial
Vision System for Licence Plate Recognition,
International Journal of Neural Systems, Vol.
8, No. 1, , 1997, pp. 113-126.

[4] D. Irecki & D. G. Bailey: Vehicle registration
plate localization and recognition, Proc. of the
Electronics New Zealand Conference, ENZ
Con ’01, New Plymouth, New Zealand,
September 2001.

[5] X. F. Hermida, F. M. Rodríguez, and J. L.
Fernandez: A System for the Automatic and
Real Time Recognition of V.L.P.'s (Vehicle
License Plates), Proc. of International
Conference on Image Analysis and Processing,
Florencia, Italia. September 1997.

[6] P. Comelli, et al.: Optical Recognition of Motor
Vehicle License Plates, IEEE Trans. on
Vehicular Technology, Vol. 44, No. 4,
November 1995, pp. 790 –799.

[7] T. Naito, et al.: Robust License-Plate
Recognition Method for Passing Vehicles
under Outside Environment, IEEE Trans. on
Vehicular Technology, Vol. 49, No. 6,
November 2000, pp. 2309-2319.

[8] J. A. Hegt, R. J. de la Haye and N. A. Khan: A
High Performance License Plate Recognition
System, Proc. of IEEE International
Conference on Systems, Man, and Cybernetics,
Vol. 5, October 1998, pp. 4357-4362.

[9] Hsi-Jian Lee, Si-Yuan Chen, Shen-Zheng
Wang: Extraction and Recognition of License
Plates of Motorcycles and Vehicles on

Acta Electrotechnica et Informatica No. 4, Vol. 5, 2005 7

ISSN 1335-8243 © 2005 Faculty of Electrical Engineering and Informatics, Technical University of Košice, Slovak Republic

Highways, Proc. of Pattern Recognition, 17th

International Conference on (ICPR’04), Vol. 4,
August 2004, pp. 356-359.

[10] TWAIN Specification. Ver. 1.0, 2000, 552 p.
http://www.twain.org/docs/Spec1_9_197.pdf.

[11] Herout, P.: Učebnica jazyka C. 2. diel, Kopp,
České Budějovice, 1999 (in Czech).

[12] Kok Kiaw Teo: Low Cost Number Plate
Recognition, University of Queensland, St.
Lucia, Queensland, 2003.

[13] Dragúň, J.: Rozpoznávanie znakov s využitím
techník umelej inteligencie. MSc. Thesis,
Department of Control and Information
Systems, FEE University of Žilina, 2004 (in
Slovak).

BIOGRAPHY

Aleš Janota was born on 5. 4. 1963. In 1986 he
graduated (MSc.) at the Department of Interlocking,
Signalling and Communications of the Faculty of
Mechanical and Electrical Engineering at the
Technical University in Transport and
Communications in Žilina. He defended his PhD. in
the field of telecommunications in 1998; his thesis
title was "Knowledge Base for Railway Interlocking
and Signalling". In 2003 he was given the academic
degree “Associate Professor” (doc.); his habilitation
thesis was entitled “Formal specification and
verification of safety-critical systems”. At present he
works as an associate professor at the Department of
Control and Information Systems at the Faculty of
Electrical Engineering of the University of Žilina
and both his research and educational activities are
focused mostly on AI techniques and their
applications in the field of intelligent transportation
systems; a special attention is also paid to theory of
safety-related control systems.

Jiří Zahradník was born on 23. 7. 1946. In 1969 he
graduated from the Department of Interlocking,
Signalling and Communications at the Faculty of
Mechanical and Electrical Engineering at the
Technical University of Transport in Žilina. He
defended his PhD thesis in the field of
communication engineering in 1981. In 1987 he
became an associate professor at the Faculty of
Mechanical and Electrical Engineering of the
Technical University of Transport and
Communications in Žilina in the field of
interlocking, signalling and communications in
transport. In 2004 he habilitated; his habilitation
thesis was entitled „Analysis of failure effects of
computer safety systems”. At present he works at the
Department of Control and Information Systems at
the University of Žilina and his research activities
are aimed at technologies and services of intelligent
transportation systems and the solving problems of
their safety.

Juraj Spalek was born on 22. 6. 1953. In 1976 he
received his MSc. from the Department of
Interlocking, Signalling and Communications at the
Faculty of Mechanical and Electrical Engineering of
the Technical University of Transport and
Communications in Žilina. His PhD thesis (1981)
entitled "Electronic logical system as interlocking
system" concerned the area of safety engineering.
His research and pedagogical interests include
reliability engineering, fuzzy-set theory applications,
and analysis of reliability and safety of electronic
systems for safety-related critical applications. It
was on this topic that he worked out his second
doctoral thesis in 1993 "Electronic systems
properties in critical applications". At the present he
works as an associate professor and a head of the
Department of Control and Information Systems at
the Faculty of Electrical Engineering of the
University of Žilina.

