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SUMMARY 
Two approaches to calculating distribution energy losses are developed in this paper. The first one is based on the fuzzy 

load flow, and the other one uses fuzzy clustering technique. The attention at the first approach is devoted to forming the 
fuzzy numbers that represent loads. Data accessible from the measurements in corresponding substations are considered in 
this process. Using formed fuzzy loads one fuzzy load flow calculation is made. Results of calculation are fuzzy power losses. 
Defuzzification gives the deterministic value of average power losses that multiplying with the number of hours for analyzed 
period gives energy losses. For the second approach, the range of the coefficient that defines fuzziness of clustering is 
determined, as well as an optimal number of clusters. Analyses shows that the best results are obtained for fuzziness 
coefficient on the range of 1.1-2, and the number of clusters up to 20. 
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1. INTRODUCTION 
 

Power and energy losses are inevitable 
consequence of energy transmission and distribution 
from generation to consumer points. The total losses 
sometimes make ten or more percents of delivered 
energy. Therefore, it is important to have the right 
estimate of losses, as well as to find ways for their 
reduction. Basic difficulties in solving these tasks 
are: identification of technical and non-technical 
losses, determination of the structure of losses 
(distribution of losses throughout the network 
elements), location of critical elements from the 
aspect of losses, and selection of optimal methods 
for losses reduction. The importance of technical 
losses becomes even higher for distribution utilities 
in deregulated environment since the non-technical 
losses will become out of concern (retail companies 
will take care of them). 

Identification of load curves for each particular 
element is needed for exact calculation of technical 
losses. That is not possible since appropriate meters 
exist only at some locations in the network. This is 
one of causes that many different approaches for 
distribution losses assessment are developed. All 
these approaches can be classified in two basic 
groups: deterministic and probabilistic [1, 10 and 
11]. Depending on factors, chosen to be the most 
influential, in each of these two main groups we may 
distinguish some subgroups. The variety of the 
methods is due to chosen factors, but at the same 
time illustrates the complexity of the electric energy 
loss calculations as well as impossibility to find 
unique approach. 

In a large variety of deterministic methods, the 
method based on the relationship between load and 
loss factors has been widely used. Methods based on 
equivalent impedance, average current and average 
square current, as well as regression method are also 
frequently used [10]. These methods can give results 
that significantly differ from real values in some 
cases. Moreover, application of these methods to 
finding structure of losses is limited. That is why we 

should improve existed methods as well as develop 
new ones. 

As a result of the fact that loads are not exact 
known, the fuzzy load flow method [7] is developed. 
Starting from this method, an approach to 
calculating energy losses is developed in this paper. 
The attention is devoted to forming the fuzzy 
numbers that represent node loads. 

Distribution networks are extended over wide 
areas and consisted of large number of elements. 
Because of that, last years has appeared method for 
electrical energy losses calculation based on 
clustering technique. In this paper, a method for 
energy losses calculation, based on fuzzy clustering 
technique, is developed. 
 
2. APPROACH BASED ON THE FUZZY 

LOAD FLOW  
 

In distribution networks measurements are 
usually made only for industry consumers, and on 
the HV/MV substations. Therefore loads (powers) 
for many load nodes are not exact known, but they 
can be estimated in some way.  

Since the loads (powers) are not strictly known, 
it is appropriate to consider them as fuzzy numbers. 
Power limits (min and max), for each load node, can 
be assessed on the basses of experience. Beside 
loads, we can regard voltage of distribution root 
node as fuzzy number. If fuzzy numbers that 
represent loads as well as voltage of root node are 
determined, we can make fuzzy load flow 
calculation [7]. Procedure of calculation is based on 
the algorithm presented in [8] according to fuzzy 
arithmetic lows. The usual algebraic operations can 
readily be extended to fuzzy sets using the Extension 
Principle formulated by Zadeh. For any α -interval 
of confidence is: 
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Fuzzy load flow calculations are usually made 
using triangular or trapezoidal fuzzy numbers. It 
should noticed, that addition and subtraction of these 
fuzzy numbers do not deform membership functions. 
If triangular (trapezoidal) fuzzy numbers are 
multiplied or divided, membership functions of 
result is not triangular (trapezoid) fuzzy number.  

If we want to apply fuzzy load flow for 
distribution energy losses calculation basic problem 
is forming of fuzzy numbers that represent loads. 
Therefore, a new method to forming fuzzy numbers 
that represent loads is proposed in this paper. The 
method gives satisfactory results for energy losses, 
as we will show in test example. 

The estimation process considers assumption of 
exact knowing the following data: 
− current curve of the first feeder section, 
− peak power of each load node, 
− participations of load categories in each node, 
− typical load patterns of different load categories. 
 

Current curve of the first feeder section is usually 
known on the bases of meters made at substation. 
Peak powers of load nodes we can assess on the 
bases of rated power of distribution transformers and 
service experience. A distribution transformer 
supplies consumers that belong to different load 
categories. Because of that, it is eligible to know 
load patterns of different load categories, as well as 
participations of load categories in load nodes. 
These data we can obtain by meters on proper 
locations and analyzing historical service data. 

On the bases of data mentioned above, fuzzy 
numbers that represent different load categories can 
be formed. For this reason, at the first annual current 
curves for each load category are estimated. Current 
of all consumers that belong to x load category for 
hour t of year (correspond to hour j of day) we can 
estimate as: 
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where: 
x  - load category, 

)(tI fs  - current of first feeder section at hour t, 

)( jpd
x  - relative power of x load category at hour j 

given from a typical hourly load pattern, 

iri Ik  - assumed maximal current of distribution 
transformer i.  

ixk  - participation of x load category in node i, 

β  - set of load nodes, 

Lα  - set of load categories, 

riix
d
x Ikkjp

i
)(  - assumed current of x load category 

consumers in node i at the hour j of the 
day when annual peak loading appears.  

 
The coefficient )( jk  in (5) is calibration 

coefficient that can be calculated using relation [5, 
9]: 
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Introducing this coefficient, it is satisfied request 
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x
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. The current curves are then 

normalized using equation: 
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Based on the normalized curves, probability 

distribution of current of each load category is 
obtained determining number of hour for each 1% 
segment of loading. These distributions are 
converted to fuzzy membership functions according 
to a possibility-probability consistency principle [2]. 
Membership functions, obtained on this way, have 
complex forms, but they can usually approximate by 
some simple curves. Fuzzy numbers consisting of 
three lines are used for load categories in test 
example presented in this paper. 

Current of load node i, as fuzzy number, can be 
estimated by equation: 
 

∑
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Using estimated fuzzy currents of load nodes 

fuzzy load flow calculation is made. Results of 
calculation are node voltages and power/current 
flows as fuzzy numbers. Using the calculated current 
values, power losses as fuzzy numbers can be 
obtained. Defuzzification gives the deterministic 
value of power losses that multiplied with number of 
hours for analyzed period (8760 i.e. 8784 for leap 
year) gives energy losses. There are several 
defuzzyfication strategies, but authors suggest the 
bisector method [3]. 

Accuracy of presented method is analyzed on the 
test example, comparing its results with ones 
obtained by deterministic approach. In this case, 
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current of load node i, for hour t of year can be 
estimated as: 

 

∑
α

=
L

i
jpkIktIjktI d

xxirifsi )()()()(  .                    (8) 

 
Using these currents, load flow calculation [8] is 

made for each hour of year (8760 or 8784 for leap 
year). Annual energy losses are determined as sum 
of calculated power losses. 
 
 
3. APPROACH BASED ON FUZZY 

CLUSTERING TECHNIQUE 
 

Clustering is one of methods for analyzing and 
processing large and not well-known amount of 
data. This is the method of classifying the data set X 
into subsets, clusters, based on a defined similarity 
measure [5, 6]. On this way, a set of characteristic 
states that describe analyzed problem can be 
generated. 

In classical clustering analysis, these classes are 
required to form a partition of X such that degree of 
association is strong for data within blocks of the 
partition. When the requirement of a crisp partition 
of X is replaced with a weaker requirement of a 
fuzzy partition or a fuzzy pseudopartition of X 
(Appendix 1), we refer to the emerging problem area 
as fuzzy clustering. Fuzzy pseudopartitions are often 
called fuzzy c partition, where c designates the 
number of fuzzy classes in the partition. 

There are two basic methods of fuzzy clustering. 
One of them, based on fuzzy c partitions, is called a 
fuzzy c means clustering method [3]. Mentioned 
algorithm is given in appendix 2. The algorithm  
 

starts from the assumption that desired number of 
clusters c is given and, in addition, a real number m, 
and a small positive number ε, serving as a stopping 
criterion, are chosen. 

For purpose of loss calculations clustering 
process is performed on the state vector consisting 
of active and reactive powers of load nodes and root 
node voltage for each hour during the year. If 
estimations of network states are made on the bases 
of data mentioned above, instead of node powers 
(active and reactive) we can use node currents 
estimated using (8). As result of clustering process 
we obtain c clusters, i.e. c characteristic states of the 
network. After that, fuzzy load flow calculations of 
characteristic states of network are made [8]. Results 
of calculations are node voltages, power flows, and 
power losses in every single element of network, as 
well as the total power losses for cluster centers. 
Now we assume that loadings are constant during 
the set of hours that belong to the cluster. 
Multiplying power losses of cluster center with the 
number of hours that belong to the cluster, energy 
losses of cluster are obtained. Total energy losses are 
calculated as sum of energy losses of clusters. 

 
 

4. TEST EXAMPLE 
 

The methods, presented above, are used for 
calculation of annual energy losses of a few test 
networks. One of used test networks is shown in Fig. 
1. This is real 10 kV suburban distribution network 
consisting of 28 overhead lines, 5 cable lines 
(dashed line), and 21 distribution substations 10/0.4 
kV/kV. Fig. 1 contains the parameters required for 
calculations.  

 
 
 

 
 

Fig. 1  Test network 
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The consumers were classified into three 
categories denoted as A, B and C load category. 
Fig. 2 shows normalized hourly load patterns of 
different load categories [4], while data about annual 
peak powers of load nodes and participations of load 
categories in each load node are shown in Table 1. 

Fuzzy numbers that represent loading for each 
load category, shown on the figures 5-7, were 
formed on the basis of typical hourly load patterns 
(Fig. 2) and measured current curve of the first 
feeder section (Fig. 3) or duration current curve (Fig. 
4). Membership functions, of these fuzzy numbers, 
consisting of three lines were obtained from 
probability functions using least square method. 
Using these fuzzy numbers and the data given in the 
table 1, fuzzy loadings of load nodes were 
determined. Then, fuzzy load flow were made, and 
fuzzy power losses were calculated.  
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Fig. 2  Hourly load patterns for different load 

categories 
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Fig. 3  Current curve of the first feeder section 
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Fig. 4  Duration current curve of the first feeder 
section 

Defuzzyfication of calculated fuzzy power losses 
gave us average power losses. Defuzzyfication were 
made using bisector method. Annual energy losses 
were calculated multiplying average power losses 
with the number of hours (8760 or 8784). 
 

Node 
number A (%) B (%) C (%) Smax 

[MVAr] 
cos ϕ  

34 70 30 0 0.090 0.96 
35 60 20 20 0.220 0.96 
36 100 0 0 0.240 0.95 
37 20 20 60 0.020 0.97 
38 20 0 80 0.170 0.98 
39 0 20 80 0.170 0.96 
40 20 50 30 0.180 0.94 
41 30 70 0 0.180 0.93 
42 80 20 0 0.200 0.95 
43 0 80 20 0.200 0.98 
44 60 40 0 0.300 0.96 
45 90 0 10 0.180 0.95 
46 0 90 10 0.170 0.99 
47 10 20 70 0.05 0.99 
48 10 10 80 0.350 0.96 
49 0 20 80 0.230 0.97 
50 20 30 50 0.380 0.95 
51 20 20 60 0.160 0.96 
52 20 0 80 0.270 0.94 
53 20 0 80 0.270 0.94 
54 20 20 60 0.380 0.97 
55 20 20 60 0.380 0.97 
56 10 50 40 0.160 0.96 

 
Tab. 1  Peak powers and the participation of each 

load category 
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Fig. 5  Fuzzy load profile of A load category 
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Fig. 6  Fuzzy load profile of B load category 
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Fig. 7  Fuzzy load profile of C load category 
 

When electrical energy losses were calculated 
using fuzzy clustering, we changed number of 
clusters c as well as the value of coefficient m that 
defines fuzziness of clustering.  

In order to show accuracy of presented methods, 
loading of load nodes, for each hour, are estimated  
 

using deterministic approach. After that, annual 
energy losses are determined as sum of power 
losses, obtained from load flow calculations for each 
hour during the year. Results obtained on this way 
we regard as accurate. Deterministic, fuzzy, and 
fuzzy clustering calculations are based on the same 
estimation method. Therefore, differences in results 
are only consequence of using fuzzy, i.e. fuzzy 
clustering approach. Real accuracy of presented 
methods depends obviously on the accuracy of 
estimation procedure. 

Results of deterministic, fuzzy load flow, and 
fuzzy clustering calculations are shown on table 2. 
The table, beside total energy losses (real and 
reactive), shows line losses apart of transformer 
losses. Additionally, losses of some chosen elements 
are shown. 

The reference values of losses (exact losses) are 
ones given in the row “estimation”. Comparing the 
results, following statements can be established. 

 
 

Total losses Lines losses Transformers 
losses 

Line 4-5 
losses 

Line 9-10 
losses 

Transformer 
30-51 losses 

 

MWh MVArh MWh MVArh MWh MVArh MWh MVArh MWh MVArh MWh MVArh
Estimation 780.2 709.2 530.9 321 249.3 388.2 30.98 18.5 75.4 45.02 9.795 15.3 

Fuzzy approach 794.1 735.3 560.7 339.1 255 396.2 33.2 19.8 70.1 41.9 7.8 10.3 
1 655.7 570.7 434.2 262.5 221.5 308.2 25.26 15.08 62.51 37.32 8.766 12.69
2 744 665.1 504.5 305 239.4 360 29.46 17.59 71.81 42.88 9.485 14.51
3 763.4 686 520 314.4 243.4 371.6 30.37 18.13 73.93 44.14 9.643 14.91
5 769.4 693.9 524 316.8 245.3 377 30.61 18.27 74.36 44.4 9.690 15.03

10 774.5 701 527.3 318.8 247.2 382.2 30.79 18.38 74.82 44.67 9.720 15.11

m
=1

.1
 

20 777.1 705.1 528.9 319.8 248.2 385.3 30.87 18.43 75.1 44.83 9.766 15.22
1 655.7 570.7 434.2 262.5 221.5 308.2 25.26 15.08 62.51 37.32 8.766 12.69
2 743.1 665 504.5 305.1 239.4 359.9 29.46 17.58 71.82 42.89 9.478 14.48
3 764.4 687 520.8 314.9 243.6 372.1 30.41 18.16 74.03 44.2 9.643 14.91
5 769.1 693.6 523.8 316.7 245.3 376.9 30.58 18.26 74.36 44.4 9.682 15.01

10 773.3 700.4 526.2 318.1 247.2 382.2 30.72 18.34 74.7 44.6 9.724 15.12

m
=1

.2
5 

20 777.5 705.5 529.2 320 248.3 385.4 30.88 18.44 75.16 44.87 9.763 15.22
1 655.7 570.7 434.2 262.5 221.5 308.2 25.26 15.08 62.51 37.32 8.766 12.69
2 744 665 504.6 305.1 239.4 359.9 29.45 17.58 71.84 42.89 9.469 14.47
3 765 687.4 521.3 315.2 243.7 372.2 30.43 18.17 74.09 44.23 9.626 14.87
5 769.6 693.8 524.3 317 245.3 376.8 30.59 18.26 74.49 44.47 9.675 14.99

10 771.3 698 524.6 317.2 246.7 380.9 30.62 18.28 74.51 44.49 9.710 15.08

m
=1

.5
 

20 776.6 704 528.7 319.7 247.9 384.4 30.84 18.41 75.09 44.83 9.739 15.16
1 655.7 570.7 434.2 262.5 221.5 308.2 25.26 15.08 62.51 37.32 8.766 12.69
2 721.3 640.5 486.4 294.1 234.8 346.4 28.35 16.93 69.44 41.46 9.277 13.97
3 742 662.9 502.9 304.1 239 358.8 29.35 17.53 71.66 42.78 9.468 14.47
5 770.1 693 525.3 317.6 244.8 375.3 30.59 18.26 74.9 44.72 9.670 14.98

10 769.3 693.9 523.8 316.7 245.5 377.2 30.5 18.21 74.41 44.42 9.602 14.81

m
=2

 

20 771.2 697.2 524.8 317.3 246.4 379.9 30.57 18.25 74.76 44.64 9.703 15.06
1 655.7 570.7 434.2 262.5 221.5 308.2 25.26 15.08 62.51 37.32 8.766 12.69
2 696.5 613.8 466.6 282.1 229.7 331.7 27.15 16.21 66.92 39.95 9.083 13.48
3 744.6 665.4 505.2 305.5 239.4 359.9 29.44 17.57 72.3 43.16 9.520 14.61
5 729.6 649.2 493.1 298.2 236.4 351 28.71 17.14 70.64 42.18 9.379 14.24

10 665.7 581.2 443.1 267.3 223.5 313.9 25.71 15.35 63.7 38.03 8.868 12.94

Fu
zz

y 
cl

us
te

rin
g 

m
=5

 

20 668.3 584 444.3 268.6 224.1 315.4 25.84 15.42 64 38.2 8.887 12.99
 

Tab. 2  Results obtained by deterministic estimation, fuzzy clustering and approach based on fuzzy load flow 
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For total energy losses as well as losses of 
elements close to root node, approach based on the 
fuzzy load flow gives satisfactory results. The error 
of these results is within 5%. The error significantly 
increases with increasing of distance of element 
from the root node. 

Accuracy of results obtained by fuzzy clustering 
depends on the number of clusters as well as on the 
value of coefficient m. The best results are obtained 
for m within interval 1.1-2. If coefficient m is larger 
then 2, accuracy decreases with increasing number 
of clusters. Results of fuzzy clustering for one 
cluster do not depend on the value of coefficient m, 
and results in these cases are lesser then real 
(correspond to calculation using mean values of 
loadings). Respecting the results shown in table 2, as 
well as the fact that number of clusters has minor 
influence on requested calculation time of fuzzy 
clustering, we can conclude that it is suitable to 
choose small value for m (e.g. 1.25) and 10-20 
clusters. 
 
 
5. CONCLUSION 
 

Two approaches to calculating distribution 
energy losses are developed in this paper. First one 
is based on the fuzzy load flow, and second one on 
the fuzzy clustering technique. Methods respect real 
fact that loads (powers) for many load nodes are not 
exact known. Both approaches can calculate 
structure of losses (distribution of losses throughout 
the network elements). 

Accuracy of the approach based on fuzzy load 
flow calculations depends on the chosen 
defuzzyfication method. For purposes of energy loss 
calculations the authors suggest bisector 
defuzzyfication method. 

Accuracy of results obtained by fuzzy clustering 
depends on the number of clusters as well as on the 
value of coefficient m. The analyses made by 
authors are shown the best results are obtained for m 
within interval 1.1-2, and 10-20 clusters. 
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Appendix 1: Fuzzy pseudopartition [3] 
 

Let }...,,,{ 21 nxxxX =  be a set of given data. A 
fuzzy pseudopartition or fuzzy c-partition of X is a 
family of fuzzy subsets of X, denoted by 

},...,,{ 21 cAAAP =  that satisfies: 
 

n

c

i
ki NkxA ∈=∑

=

,1)(
1

 ,                                 (A.1) 

 
for },...,2,1{ nN n = , and: 
 

c

n

k
ki NinxA ∈<< ∑

=1

)(0  ,                            (A.2) 

 
where c is positive integer and cN  set of integers 

},...,2,1{ cNc = . 
 
 
Appendix 2: Algorithm of fuzzy clustering 
 

Algorithm of fuzzy clustering [3] is consisted of 
following steps: 
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Step 1. 
Let 0=t . Select an initial fuzzy pseudopartition 

)0(P . 
 
 
Step 2. 
Calculate the c cluster centers )()(

1 ...,, t
c

t vv  by 
relation: 
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for )(tP  and the chosen value of m. 
 
 
Step 3. 
Update )1( +tP  by the following procedure: For each 

Xxk ∈ , if 0
2)( >− t

ik vx  for all cNi ∈ , then 

define: 
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if 0
2)( =− t

ik vx  for some cNIi ⊆∈ , then define 

)()1(
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i xA +  for Ii ∈  by any nonnegative real 

numbers satisfying: 
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and define 0)()1( =+

k
t

i xA  for INi c −∈ . 
 
 

Step 4. 
Compare )(tP  and )1( +tP . If ε≤−+ )()1( tt PP , then 

stop; otherwise, increase t by one and return to 
step 2. 
In Step 4, )()1( tt PP −+  denotes a distance between 

)1( +tP  and )(tP  in the space cnR × . An example of 
this distance is 
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In the algorithm, the parameter is selected 

according to the problem under consideration. When 
1→m , the fuzzy c-means converges to a 

"generalized" classical c-means. When ∞→m , all 
cluster centers tend towards the centroid of data set 
X. That is, the partition becomes fuzzier with 
increasing. Currently, there is no theoretical basis for 
an optimal choice for the value of m. However, it is 
established that the algorithm converges for any 

),1( ∞∈m . 
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